We have that F=ma from the 2nd Newton law where F is the force, m is the mass and a is the acceleration. Suppose we have that F' is the new force and m' is the new mass. Then, we have that a'=F'/m' still, by rearranging Newton's law. We are given that F'=2F and m'=m/2. Hence,

But now, we have from F=ma, that a=F/m and we are given that a=1m/s^2.
We can substitute thus, a'=4a=4*1m/s^2=4m/s^2.
Friction is the force you get when you (for example) Rub something with another, it's a force that may generate heat and even some resistance. Another example is rubbing your hands together, they get hot, therefore friction is working, without friction you wouldn't be able to stop moving.
Answer:
The length of the tube is 3.92 m.
Explanation:
Given that,
Electric potential = 100 MV
Length = 4 m
Energy = 100 MeV
We need to calculate the value of 
Using formula of relativistic energy

Put the value into the formula


Here, 



We need to calculate the length
Using formula of length

Put the value into the formula


Hence, The length of the tube is 3.92 m.
Answer:
R = 710.7N
L = 67.689 N
During gravity fall L = R = 0 N
Explanation:
So the acceleration that the elevator is acting on the woman (and the package) in order to result in a net acceleration of 0.15g is
g + 0.15g = 1.15g
The force R that the elevator exerts on her feet would be product of acceleration and total mass (Newton's 2nd law):
a(m + M) = 1.15g(57 + 6) = 1.15*9.81*63 = 710.7N
The force L that she exerts on the package would be:
am = 1.15g *6 = 1.15*9.81*6 = 67.689N
When the system is falling, all have a net acceleration of g. So the acceleration that the elevator exerts on the woman (and the package) is 0, and so are the forces L and R.