The redshift of distant galaxy are larger than those of closer galaxies, which indicates that the galaxy is receding at a faster rate.
- The Universe was 5 percent its current size when light left objects now at redshift of <u>19</u>.
Reasons:
The size of the universe represented as a scale factor with relation to the redshift can be presented as follows;

Where;
a₀ = The current size of the Universe
a = The size of the early Universe = 5% of a
Therefore;


0.05 + 0.05·z = 1

- The redshift is of the observed light is, z = <u>19</u>
Learn more here:
brainly.com/question/14459434
brainly.com/question/3654558
Answer:
33.2 m
Explanation:
For the first object:
y₀ = 81.5 m
v₀ = 0 m/s
a = -9.8 m/s²
t₀ = 0 s
y = y₀ + v₀ t + ½ at²
y = 81.5 − 4.9t²
For the second object:
y₀ = 0 m
v₀ = 40.0 m/s
a = -9.8 m/s²
t₀ = 2.20 s
y = y₀ + v₀ t + ½ at²
y = 40(t−2.2) − 4.9(t−2.2)²
When they meet:
81.5 − 4.9t² = 40(t−2.2) − 4.9(t−2.2)²
81.5 − 4.9t² = 40t − 88 − 4.9 (t² − 4.4t + 4.84)
81.5 − 4.9t² = 40t − 88 − 4.9t² + 21.56t − 23.716
81.5 = 61.56t − 111.716
193.216 = 61.56t
t = 3.139
The position at that time is:
y = 81.5 − 4.9(3.139)²
y = 33.2
Answer: 500 s
Explanation:
Speed
is defined as a relation between the distance
and time
:

Where:
is the speed of light in vacuum
is the distance between the Earth and Sun
is the time it takes to the light to travel the distance
Isolating
:


Finally:

I think you would be using a topographic Map, So the answer should be A
Answer:
Explanation:
The power of each of the speakers is 0.535 W. At a distance d intensity of sound can be found by the following formula
Intensity of sound = Power / 4π d²
= .535 / 4 x 3.14 x (27.3/2)²
= 2.286 x 10⁻⁴ J m⁻² s⁻¹
Intensity of sound due to other source = 5.715 x 10⁻⁵J m⁻² s⁻¹
Total intensity = 2 x 2.286 x 10⁻⁴J m⁻² s⁻¹
= 4.57 x 10⁻⁴J m⁻² s⁻¹
b ) In this case, man is standing at distances 18.15 m and 9.15 m from the sources .
The total intensity of sound reaching him is as follows
0.535 / (4 π x18.15² ) + 0.535 / (4 π x9.15² )
= 1.293 x 10⁻⁴ + 5.087 x 10⁻⁴
= 6.38 x 10⁻⁴J m⁻² s⁻¹