Answer:
The acceleration motorcycle
a = 5.13 m / s²
Explanation:
Now to determine the acceleration of the motorcycle
Use the force to analysis motion
∑ F = m * a
∑ F = E - D - m*g * sin ( β ) = m * a
E = 3168 N
D = 230 N
β = 31.6 °
3168 N - 230 N - 286 kg * 9.8 m / s² * sin ( 31.6° ) = 286 kg * a
Now solve to a'
a = [ 3168 N - 230 N - 286 kg * 9.8 m / s² * sin ( 31.6° ) ] / (286 kg)
a = 5.13 m / s²
Answer:
Temperature is also a condition that affects the speed of sound. Heat, like sound, is a form of kinetic energy. Molecules at higher temperatures have more energy, thus they can vibrate faster. Since the molecules vibrate faster, sound waves can travel more quickly.
Answer:
3.10 mole of C3H8O change in entropy is 89.54 J/K
Explanation:
Given data
mole = 3.10 moles
temperature = -89.5∘C = -89 + 273 = 183.5 K
ΔH∘fus = 5.37 kJ/mol = 5.3 ×10^3 J/mol
to find out
change in entropy
solution
we know change in entropy is ΔH∘fus / melting point
put these value so we get change in entropy that is
change in entropy 5.3 ×10^3 / 183.5
change in entropy is 28.88 J/mol-K
so we say 1 mole of C3H8O change in entropy is 28.88 J/mol-K
and for the 3.10 mole of C3H8O change in entropy is 3.10 ×28.88 J/K
3.10 mole of C3H8O change in entropy is 89.54 J/K
Answer: D.) 39,200 J
Via the equation of potential energy PE = mgh where m is mass, g is the average gravity on earth and h is the height. In this case m = 400 kg, g = 9.8, h = 10 m thus:

P.E.= 39,200 Joules