Number in the thousands place: 2
Number in the hundreds place: 4
Since 4<5, the number rounds down.
Final answer: 32,000
What's the equation with x? I can't solve it without knowing where to find x....
Answer:
-85
Explanation:
Given the mathematical expression:

First, we recall the product of signs.

So, first, we open the bracket:

We then simplify:

The result is -85.
Answer:
The distribution of the sample data will approach a normal distribution as the sample size increases.
Step-by-step explanation:
Central limit theorem states that the mean of all samples from the same population will be almost equal to the mean of the population, if the large sample size from a population, is given with a finite level of variance.
So, here Option C is not correct conclusion of central limit theorem -The distribution of the sample data will approach a normal distribution as the sample size increases.
We can say that the average of sample mean tends to be normal but not the sample data.
Answer:
Anything in the form x = pi+k*pi, for any integer k
These are not removable discontinuities.
============================================================
Explanation:
Recall that tan(x) = sin(x)/cos(x).
The discontinuities occur whenever cos(x) is equal to zero.
Solving cos(x) = 0 will yield the locations when we have discontinuities.
This all applies to tan(x), but we want to work with tan(x/2) instead.
Simply replace x with x/2 and solve for x like so
cos(x/2) = 0
x/2 = arccos(0)
x/2 = (pi/2) + 2pi*k or x/2 = (-pi/2) + 2pi*k
x = pi + 4pi*k or x = -pi + 4pi*k
Where k is any integer.
If we make a table of some example k values, then we'll find that we could get the following outputs:
- x = -3pi
- x = -pi
- x = pi
- x = 3pi
- x = 5pi
and so on. These are the odd multiples of pi.
So we can effectively condense those x equations into the single equation x = pi+k*pi
That equation is the same as x = (k+1)pi
The graph is below. It shows we have jump discontinuities. These are <u>not</u> removable discontinuities (since we're not removing a single point).