1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariulka [41]
3 years ago
15

Original price: 60 markup:15% what is retail price

Mathematics
1 answer:
sdas [7]3 years ago
7 0
60x1.15=69
Retail price is $69
You might be interested in
Solve for x enter the solutions from the least to greatest x2+7=43 lesser x= Greater x=
Snowcat [4.5K]

Answer:

x = ±6

Step-by-step explanation:

Step 1: Write out equation

x² + 7 = 43

Step 2: Subtract 7 on both sides

x² = 36

Step 3: Square root both sides

√x² = √36

x = ±6

7 0
3 years ago
Pls Help anyone. Ill will give brainliest and you will get 45 points pls anyone pls ㏒㏒㏒㏒㏒㏒
frosja888 [35]
The answer is E: (b-c)(a+c)
3 0
3 years ago
Please help me solve this step by step please :(
Ratling [72]

Answer:

B) 60.21 ft²

Step-by-step explanation:

Area of a triangle = 1/2bh

You can‘t used mixed measurements (feet and inches), so you have to convert each length to inches

8’6”=102’

14’2”=170’

Now find the area

1/2 x 102 x 170 = 8670 in²

This is one of the answers, but the quetion asks how many quart feet you need.

So, convert it back to feet.

8670 x 0.06944444444 = 60.2083333

(You could also have converted the two lengths to feet. 8’6” = 8.5 ft.  14’2” = 14.16666666.  This way would probably have been faster.

1/2 x 8.5 x 14.166666 = 60.20833333)

3 0
3 years ago
12x - 2/3 = 83 1/3 <br><br> 12x=?<br><br> x=?
Serjik [45]

Answer:

12x = 84

x = 7

Step-by-step explanation:

12x = 83 1/3 + 2/3

12x = 84

x = 84/12

x = 7

Hope that helps!

4 0
3 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
Other questions:
  • Is F(x)=(3/4)^x growth or decay
    15·2 answers
  • Number Frequency 29 22 30 22 31 22 32 22 33 22 What is the mode?
    10·2 answers
  • Place 145 in the place value chart
    8·2 answers
  • Find the equation of the line through point (-2,8) with slope 1/2.
    8·1 answer
  • In a certain community, 30% of the families own a dog, and 20% of the families that own a dog also own a cat. It is also known t
    10·1 answer
  • How do I solve this? I'm so confused on what I'm doing
    12·1 answer
  • Complete the conditional statement<br> If a +2 A <br> Pls help!!
    5·1 answer
  • Solve for x: 0.4x - 3 = 1.4
    11·1 answer
  • Pls help i dont wanna ruin my sleep schedule
    10·1 answer
  • PLEASE HELP
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!