0.29 m/s (wave velocity = wavelength (lamda)/period (T) in metres)
35 / 1.2 = 29.16
29.16 ÷ 100 = 0.29
Wave velocity in string:
The properties of the medium affect the wave's velocity in a string. For instance, if a thin guitar string is vibrated while a thick rope is not, the guitar string's waves will move more quickly. As a result, the linear densities of the two strings affect the string's velocity. Linear density is defined as the mass per unit length.
Instead of the sinusoidal wave, a single symmetrical pulse is taken into consideration in order to comprehend how the linear mass density and tension will affect the wave's speed on the string.
Learn more about density here:
brainly.com/question/15164682
#SPJ4
Solution :
When the spacecraft is at halfway point, the distance from the Earth as well as Mars are same. We have to account the masses of the planets. The gravitational force that is exerted by the Earth is greater because of its combined mass with the space probe.
The mass of Earth is greater than the mass of Mars. Therefore, the force of Earth is more than Mars.
Answer:
Hope it helped
stay safe, mark BRAINLIEST
Frequency = speed / wavelength
(6 m/s) / (12 m) = 0.5 Hz.
That's not infrared light.
Infrared light waves move about 50 million times faster than that, and they're only about 0.00000007 as long as that.
Answer:
(D) energy from one place to another