Answer:
d. Relative humidity increases.
Explanation:
The expression of relative humidity in terms of absolute humidity, absolute pressure and saturation pression at measured temperature is:

When temperature decreases, the saturation pressure decreases also and, consequently, relative humidity increases. Therefore, the right answer is option D.
Answer:
(a) F = 320
(b) = F = -5.1625
Explanation:
The formula that converts degree Celsius (C) to degree Fahrenheit (F) is:
F = 1.8C + 32
Solving (a): F = 2C
Substitute 2C for F in the above equation
F = 1.8C + 32
2C = 1.8C + 32
Collect like terms
2C - 1.8C = 32
0.2C = 32
Multiply both sides by 5
5 * 0.2C = 32 * 5
C = 160
Recall that F = 2C
F = 2 * 160
F = 320
Solving (b): F = ¼C
Substitute ¼C for F in the above formula
F = 1.8C + 32
¼C = 1.8C + 32
Convert fraction to decimal
0.25C = 1.8C + 32
Collect like terms
0.25C - 1.8C = 32
-1.55C = 32
Divide both sides by -1.55
C = 32/(-1.55)
C = -32/1.55
C = -20.65
Recall that: F = ¼C
F = -¼ * 20.65
F = -5.1625
Answer:
The 6 fingers allele is dominant
Explanation:
We are told that the the individual is genotypically heterozygous, that is the have both types of the finger allele: the 5 finger allele and the 6 fingers allele however phenotypically, 6 fingers are observed. From this we can conclude that the 6 fingers allele is the one that is dominant because it is the one that is expressed phenotypically.
Since the bag was at rest, its initial momentum is zero. The velocity of the ball before collision is 500 ms-1.
<h3>Linear momentum</h3>
The term momentum in physics refers the product of mass and velocity. If we know mass of the object and its velocity, then we calculate the momentum.
Momentum before collision for the bullet = 0.01 kg × v
Momentum before collision for the bag = 0
Momentum after collision for the bag and bullet = (0.01 kg + 0.49 kg) 10 = 5 Kgms-1
The velocity of the bullet before collision = 0.01 kg × v + 0 = 5 Kgms-1
v = 5 Kgms-1/0.01 kg
v = 500 ms-1
Learn more about momentum: brainly.com/question/904448
Answer:
4°C
Explanation:
Water is densest at 4°C. Since dense water sinks, the bottom of the lake will be 4°C.