Answer:
θ’ = θ₀ / 2
we see that the resolution angle is reduced by half
Explanation:
The resolving power of a radar is given by diffraction, for which we will use the Rayleigh criterion for the resolution of two point sources, they are considered resolved if the maximum of diffraction of one coincides with the first minimum of the other.
The first minimum occurs for m = 1, so the diffraction equation of a slit remains
a sin θ = λ
in general, the diffraction patterns occur at very small angles, so
sin θ = θ
θ = λ / a
in the case of radar we have a circular aperture and the equation must be solved in polar coordinates, which introduces a numerical constant.
θ = 1.22 λ /a
In this exercise we are told that the opening changes
a’ = 2 a
we substitute
θ ‘= 1.22 λ / 2a
θ' = (1.22 λ / a) 1/2
θ’ = θ₀ / 2
we see that the resolution angle is reduced by half
<u>Yes. The speed of a rocket can exceed the exhaust speed of the fuel.</u>
How this is explained?
- The thrust of the rocket does not depend on the relative speed of the gases or the relative speed of the rocket.
- It depends on conservation of momentum.
What is conservation of momentum?
- Conservation of momentum, general law of physics according to which the quantity called momentum that characterizes motion never changes in an isolated collection of objects; that is, the total momentum of a system remains constant.
- Momentum is equal to the mass of an object multiplied by its velocity and is equivalent to the force required to bring the object to a stop in a unit length of time.
- For any array of several objects, the total momentum is the sum of the individual momenta.
- There is a peculiarity, however, in that momentum is a vector, involving both the direction and the magnitude of motion, so that the momenta of objects going in opposite directions can cancel to yield an overall sum of zero.
To know more about conservation of momentum, refer:
brainly.com/question/7538238
#SPJ4
Answer:
0.16Hz
Explanation:
wavelength (λ) = 125 meters
speed (V) = 20 m/s
frequency (F) = ?
Recall that frequency is the number of cycles the wave complete in one
second. And its value depends on the wavelength and speed of the wave.
So, apply the formula V = F λ
Make F the subject formula
F = V / λ
F = 20 m/s / 125 meters
F = 0.16 Hz
You use acceleration due to gravity
and 1/2 atsqr=d
therefore 1/2 * 9.8 * tsqr= d
Answer:
3 fans per 15 A circuit
Explanation:
From the question and the data given, the light load let fan would have been
(60 * 4)/120 = 240/120 = 2 A.
Next, we add the current of the fan motor to it, so,
2 A + 1.8 A = 3.8 A.
Since the devices are continuos duty and the circuit current must be limited to 80%, then the Breaker load max would be
0.8 * 15 A = 12 A.
Now, we can get the number if fans, which will be
12 A/ 3.8 A = 3.16 fans, or approximately, 3 fans per 15 A circuit.