Answer:
0.5 kg
Explanation:
The momentum of an object is defined as
p = mv
where
m is the mass
v is the velocity
In this problem we have,
v = 15 m/s is the velocity of the stone
p = 7.5 kg m/s is the momentum
Solving for m, we can find the mass of the stone:

F=mv^2/R
----> V^2=FR/m=(350x0.9)/2.5=126
----- V=11.22 m/s
The part of a river that would have animals with muscular bodies and adaptations that let survive in turbulent water is in the transition zone, the mid-transition zone to be precise.
Water at the source zone possesses a lot of potential energy and as it flows from the upper reaches the potential energy is turned into kinetic energy when the course of the river begins to gradually level out and this translates into increase in velocity. By the time river water reaches the middle of the transition zone, most of the potential energy would have been turned into kinetic energy and thus water velocity would be quite high here.
Animals living here would develop muscles because of constantly fighting against the strong current to avoid being swept downstream.
Answer:
μsmín = 0.1
Explanation:
- There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
- This friction force has a maximum value, that can be written as follows:

where μs is the coefficient of static friction, and Fn is the normal force,
perpendicular to the wall and aiming to the center of rotation.
- This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
- This force has the following general expression:

where ω is the angular velocity of the riders, and r the distance to the
center of rotation (the radius of the circle), and m the mass of the
riders.
Since Fc is actually Fn, we can replace the right side of (2) in (1), as
follows:

- When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

- (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
- Cancelling the masses on both sides of (4), we get:

- Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

- Replacing by the givens in (5), we can solve for μsmín, as follows:
