Answer:
The answer to your question are A and C
Explanation:
Quantitative data are quantities, something that we get after measuring something.
A. Measuring the rate of gas production from a chemical. This example is a quantitative measure, because we are measuring the rate.
B. Describing the clarity of water in a sample If we are describing something, means that we are not measuring anything, so this is not a quantitative measure.
C. Calculating the energy released from an electrochemical reaction If we are not measuring but we are using the data somebody else got to calculate energy, them this is a quantitative data.
Answer:cross-sectional area, and thus surface area, increases the amount of air resistance an object experiences
Explanation:
Answer:
Vectors have a size and direction. Each of the existing vector quantity has a magnitude and a direction. Having direction along with the magnitude is the difference of a vector quantity from a scalar quantity. Vectors are indicates with arrows.
1250 J in 5 sec= 250 Joule(s) per second (1250/5 0
250 Joules per second = 250 Watts ( 1J/s = 1 Watt per definition)
250 Watts output = 250/0.65 efficiency = 384 Watts input
1 Horsepower = 732 Watts
Motors 1 Horsepower and under are made in certain step sizes like
3/4 , 1/2 , 1/3, 1/4, 1/16 1/20 of a Horsepower.
3/4 Horsepower is 549 Watts
1/2 Horsepower is 366 Watts
so you need to 3/4 horsepower motor to achieve 1250 J of work in 5 seconds.