First of all, we need to convert the angular speed from rev/min into rev/s:

The angular acceleration is the variation of angular speed divided by the time:

And this is constant, so we can use the following equation to calculate the angle through which the engine has rotated:

so, 5 revolutions.
Answer:
v = 79.2 m/s
Solution:
As per the question:
Mass of the object, m = 250 g = 0.250 kg
Angle, 
Coefficient of kinetic friction, 
Mass attached to the string, m = 0.200 kg
Distance, d = 30 cm = 0.03 m
Now,
The tension in the string is given by:
(1)
Also
T = m(g + a)
Thus eqn (1) can be written as:





Now, the speed is given by the third eqn of motion with initial velocity being zero:

where
u = initial velocity = 0
Thus


The temperature rises until the water reaches the next change of state — boiling. As the particles move faster and faster, they begin to break the attractive forces between each otherand move freely as steam — a gas. The process by which a substance moves from the liquid state to the gaseousstate is called boiling.
We have the equation of motion
, where s is the displacement, a is the acceleration, u is the initial velocity and t is the time taken.
Here displacement = 135 m, Initial velocity = 0 m/s, acceleration = 9.81
Substituting

A box falls out of a stationary helicopter hovering 135 m above the ground will take 5.25 seconds to reach the ground.
Given: A cubic tank holds 1,000.0 kg of water.
Mass of water in tank (m) = 1000.0 kg
Density of water (d) = 1000.0 kg /m³
Concept: Volume(V) = Mass / Density
Since the tank holds these water in it so the volume of water will be equal to the volume of the tank.
Hence, the volume of the tank = Mass of water / Density of water
or, = 1000.0 kg / 1000.0 kg m⁻³
or, = 1.0 m³
Since tank is cubical in shape. Let its side be 'x'
The volume of tank (x³) = 1.0 m³
or. side of tank (x) = 1.0 m
Hence, the dimensions of the tank will be 1.0 m.