The following of what? It sounds like there is more than one answer.
It means wolf are begining to disseaper. They are going to be extinct.
Eukaryotic cells rely on the molecular energy of ATP to sustain all of the reactions necessary to maintain life, in the absence of ATP, these reactions would come to a halt, and the cell would inevitably die.
ATP is a molecular compound that provides the energy needed by most cells to survive. ATP represents Adenosine triphosphate, which is an organic compound that provides energy to drive the essential metabolic reactions of living cells, such as:
- Muscle contractions
- Nerve impulses
- Chemical synthesis
- Nutrient absorbtion
In the situation in which a cell was to run out of ATP, these reactions would stop, given that they require ATP to function. This means that the cell would not be able to send or receive nerve signals, absorb the nutrients it needs, or even create necessary compounds such as proteins. The stoppage of these functions would lead to the death of the cell.
To learn more visit:
brainly.com/question/836188?referrer=searchResults
Answer:
The correct option is C: antigen-binding sites
Explanation:
The antibody is shaped much like the letter Y in the English alphabet. It has two antigen binding sites that are identical in nature. The specificity of these sites is determined by the amino acid sequence that makes it up. Antibodies are complementary to these antigen binding sites, and the antibodies have an incredible ability to recognize a great variety of antigens.
Hope that answers the question, have a great day!
Answer:
Photosystem I (PS-I )and photosystem II (PS-II ) are two multi-protein complexes. These complexes contain the pigments used to absorb, harvest and catalyze the photons and light energy in the photosynthetic reactions. The main purpose of photosynthesis reactions to produce high chemical energy compounds.
Photosystem I and II are different from each other because of their absorbing wavelength of light. PS-I absorbs the longer wavelength of light than PS-II.
PS-I plays the major role in the production of high energy carriers ATP and NADPH using light energy (700 nm).
PS-II plays its function in the hydrolysis of water and ATP synthesis using light energy (680 nm).