Answer:
The coordinates of the point that divides the line segment in the ratio of 1:2 is (x,y) = (20/3 , 4)
Step-by-step explanation:
The end point coordinates of the segment AB is A(9,3) and B(2,6)
Let us assume the point P(x,y) divides the segment AB in the ratio 1: 2
⇒AP : PB = 1: 2
Now, by SECTION FORMULA:
If The point (x,y) divides the line segment with points (x1,y1) and (x2,y2) in the ratio m1: m2, then the coordinates of (x,y) is given as:
![(x,y) = ({\frac{x_2 m_1 + m_2 x_1}{m1 + m2} , \frac{y_2 m_1 + m_2 y_1}{m1 + m2} })](https://tex.z-dn.net/?f=%28x%2Cy%29%20%20%3D%20%28%7B%5Cfrac%7Bx_2%20m_1%20%2B%20m_2%20x_1%7D%7Bm1%20%2B%20m2%7D%20%2C%20%5Cfrac%7By_2%20m_1%20%2B%20m_2%20y_1%7D%7Bm1%20%2B%20m2%7D%20%7D%29)
Applying the section formula in the given cindition,
here m1 :m2 = 1 :2
we get, ![(x,y) = ({\frac{2(1) + 2(9) }{1 +2} , \frac{6(1) + 2(3)}{1 + 2} })\\\implies (x,y) = (\frac{2 + 18}{3} ,\frac{6 + 6}{3})\\ \implies (x,y) = (\frac{20}{3}, \frac{12}{3} )](https://tex.z-dn.net/?f=%28x%2Cy%29%20%20%3D%20%28%7B%5Cfrac%7B2%281%29%20%2B%202%289%29%20%7D%7B1%20%2B2%7D%20%2C%20%5Cfrac%7B6%281%29%20%20%2B%202%283%29%7D%7B1%20%2B%202%7D%20%7D%29%5C%5C%5Cimplies%20%28x%2Cy%29%20%20%3D%20%28%5Cfrac%7B2%20%2B%2018%7D%7B3%7D%20%2C%5Cfrac%7B6%20%2B%206%7D%7B3%7D%29%5C%5C%20%5Cimplies%20%28x%2Cy%29%20%3D%20%28%5Cfrac%7B20%7D%7B3%7D%2C%20%5Cfrac%7B12%7D%7B3%7D%20%20%29)
Now, comparing each ordinate separately
![x = \frac{20}{3} ,y = \frac{12}{3} = 4](https://tex.z-dn.net/?f=x%20%20%3D%20%20%20%20%5Cfrac%7B20%7D%7B3%7D%20%20%20%20%20%20%20%2Cy%20%20%3D%20%20%5Cfrac%7B12%7D%7B3%7D%20%20%3D%204)
⇒ The coordinates of P(x,y) = (20/3 , 4)
Hence, the coordinates of the point that divides the line segment in the ratio of 1:2 is (x,y) = (20/3 , 4)