1.more
2.longer
3.warmer
4.northern
5.less
6.shorter
7.colder
8.southern
<u>Answer:</u> The rate law expression for the given reaction is written below.
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
For the given chemical equation:

Rate law expression for the reaction:
![\text{Rate}=k[NO]^2[H_2]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5E2%5BH_2%5D%5E2)
Hence, the rate law expression for the given reaction is written above.
289.4 F is the right one man
Answer:
The configuration of the atom would be 2-8-2.
Explanation:
Any atom of an element combines with other element to complete its octet and become stable.
The electron configuration of the given atom is 2-8-6. That means the atom has 6 electrons in its outermost shell. To become stable the atom should have 8 electrons in its outermost shell. The given atom has 6 electrons so it either lose 6 electrons or gain 2 electrons to complete its octet.
But we know the atom having 5,6,7 electrons in its outermost shell they do not lose, they gain either 3 or 2 or 1 electrons to complete its octet.
So we say that atom with the electron configuration 2-8-6 bond with the atom having electron configuration 2-8-2.
The reaction of iron (III) oxide and aluminum is initiated by heat released from a small amount "starter mixture". This reaction is an oxidation-reduction reaction, a single replacement reaction, producing great quantities of heat (flame and sparks) and a stream of molten iron and aluminum oxide which pours out of a hole in the bottom of the pot into sand.
The balanced chemical equation for this reaction is:
2 Al(s) + Fe2O3(s) --> 2Fe(s) + Al2O3(s) + 850 kJ/mol
Curriculum Notes
This chemical reaction can be used to demonstrate an exothermic reaction, a single replacement or oxidation-reduction reaction, and the connection between ∆H calculated for this reaction using heats of formation and Hess' Law and calculating ∆H for this reaction using qrxn = mc∆T and the moles of limiting reactant. This reaction also illustrates the role of activation energy in a chemical reaction. The thermite mixture must be raised to a high temperature before it will react.
To determine how much thermal energy is released in this reaction, heats of formation values and Hess' Law can be used.
By definition, the deltaHfo of an element in its standard state is zero.
2 Al(s) + Fe2O3(s) --> 2Fe (s) + Al2O3 (s)
The deltaH for this reaction is the sum of the deltaHfo's of the products - the sum of the deltaHfo's of the reactants (multiplying each by their stoichiometric coefficient in the balanced reaction equation), i.e.:
deltaHorxn = (1 mol)(deltaHfoAl2O3) + (2 mol)(deltaHfoFe) - (1 mol)(deltaHfoFe2O3) - (2 mol)(deltaHfoAl)
deltaHorxn = (1 mol)(-1,669.8 kJ/mol) + (2 mol)(0) - (1 mol)(-822.2 kJ/mol) - (2mol)(0 kJ/mol)
deltaHorxn = -847.6 kJ
The melting point of iron is 1530°C (or 2790°F).
MARK ME BRAINLIEST