Answer: This can be quickly solved with "traintracks"
Explanation:
You start w/ grams of water and want to find moles of oxygen gas produced.
So you want to Convert:
Grams of water -> moles of water -> moles of oxygen gas.
The two things you need to know to set up the tracks are:
1)Molar mass of water- H2O
Hydrogen - 1.008(x2)
Oxygen - 16.00
Water - 18.016
Answer:
For carbon the most important forms of hybridization are the sp2- and sp3- hybridization. Besides these structures there are more possiblities to mix dif- ferent molecular orbitals to a hybrid orbital. An important one is the sp- hybridization, where one s- and one p-orbital are mixed together.
C. losing one electron
Explanation:
It is because the potassium atom electronic configuration is 2,8,8,1 where by if it loses one electron it becomes stable
Answer:
146.85 g/mol
Explanation:
PV=nRT
n=mass/molar mass
covert from mmhg to atm = 0.184 atm
convert from ml to L= 0.108 L
convert from degree C to K= 456.15 K
convert from mg to g= 0.07796g
then rearrange the formula:
n=PV/RT
=(0.184)(0.108)/(0.08206)(456.15)
n= 5.308*10^(-4)
rearrange the n formula interms of molar mass:
Molar mass= mass/n
=0.07796/(5.308*10^-4)
molar mass= 146.85g/mol