Answer: 12
Step-by-step explanation: you would divide the interest by the amount of time. 60/5
Competition is most intense between closely related species that use the same resources, as both species are competing for these limited resources.
From the given figure ,
RECA is a quadrilateral
RC divides it into two parts
From the triangles , ∆REC and ∆RAC
RE = RA (Given)
angle CRE = angle CRA (Given)
RC = RC (Common side)
Therefore, ∆REC is Congruent to ∆RAC
∆REC =~ ∆RAC by SAS Property
⇛CE = CA (Congruent parts in a congruent triangles)
Hence , Proved
<em>Additional comment:-</em>
SAS property:-
"The two sides and included angle of one triangle are equal to the two sides and included angle then the two triangles are Congruent and this property is called SAS Property (Side -Angle-Side)
<u>also read similar questions</u>: Complete this proof. Given: EC AC, DB AC, ∠A = ∠F Prove: ΔMDF ∼ ΔNCA..
brainly.com/question/16250124?referrer
Consider the proof. Given: Segment AB is parallel to line DE. Prove: AD/DC = BE/EC What is the missing statement in Step 5? A.) AC = BC B.) AC/DC = BC/EC C.) AD...
brainly.com/question/11763540?referrer
Answer:
t = 5/2
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
3t + 7 = 2 + 5t
<u>Step 2: Solve for </u><u><em>t</em></u>
- [Subtraction Property of Equality] Isolate <em>t</em> terms: 7 = 2 + 2t
- [Subtraction Property of Equality] Isolate <em>t</em> term: 5 = 2t
- [Division Property of Equality] Isolate <em>t</em>: 5/2 = t
- Rewrite: t = 5/2
Answer:
For w = 18 units perimeter is minimum
P = 2(18 + w)
Step-by-step explanation:
Given;
Area of the rectangle = 324 units²
P is the perimeter
w is the width
Let L be the length of the rectangle
therefore,
P = 2(L + w) ............(1)
also,
Lw = 324
or
L =
..........(2)
substituting 2 in 1
P = 
now,
for minimizing the perimeter
= 0
or
= 0
or
= 0
or
= -1
or
w² = 324
or
w = 18 units
For w = 18 units perimeter is minimum
therefore,
from 2
L = 
or
L = 18 units
objective function for P is:
P = 2(18 + w)