1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jek_recluse [69]
3 years ago
5

Anybody have the answer to this?

Mathematics
1 answer:
bixtya [17]3 years ago
6 0
I assume that the segment that measures 13.5 cm is a tangent to the circle at the point we see. The side that measures x is a radius of the circle, so the side of the triangle that measures x and the side that measures 13.5 cm are perpendicular. The triangle is a right triangle.
One leg measures x.
One leg measures 13.5 cm.
The hypotenuse measures x + 8.45 cm.
With the lengths of the the 3 sides, we can use the Pythagorean theorem and solve for x.

x^2 + (13.5)^2 = (x + 8.45)^2

x^2 + 182.85 = x^2 + 16.9x + 71.4025

182.25 = 16.9x + 71.4025

-16.9x = -110.8475

x = 6.559

Answer: x = 6.6 cm
You might be interested in
April took out a $600 loan from the bank . At the end of 5 years , she. Pays back the principal plus $60 simple instrest what wa
VLD [36.1K]

Answer: 12

Step-by-step explanation: you would divide the interest by the amount of time. 60/5

4 0
3 years ago
Competition is most intense between closely related species that __________. have different beak sizes use different resources u
kupik [55]
Competition is most intense between closely related species that use the same resources, as both species are competing for these limited resources.
3 0
3 years ago
GEOMETRY PROOFS!
NeX [460]

From the given figure ,

RECA is a quadrilateral

RC divides it into two parts

From the triangles , ∆REC and ∆RAC

RE = RA (Given)

angle CRE = angle CRA (Given)

RC = RC (Common side)

Therefore, ∆REC is Congruent to ∆RAC

∆REC =~ ∆RAC by SAS Property

⇛CE = CA (Congruent parts in a congruent triangles)

Hence , Proved

<em>Additional comment:-</em>

SAS property:-

"The two sides and included angle of one triangle are equal to the two sides and included angle then the two triangles are Congruent and this property is called SAS Property (Side -Angle-Side)

<u>also read similar questions</u>: Complete this proof. Given: EC AC, DB AC, ∠A = ∠F Prove: ΔMDF ∼ ΔNCA..

brainly.com/question/16250124?referrer

Consider the proof. Given: Segment AB is parallel to line DE. Prove: AD/DC = BE/EC What is the missing statement in Step 5? A.) AC = BC B.) AC/DC = BC/EC C.) AD...

brainly.com/question/11763540?referrer

6 0
2 years ago
3t + 7 = 2 +5t , then find the value of t.​
n200080 [17]

Answer:

t = 5/2

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients

Step-by-step explanation:

<u>Step 1: Define</u>

3t + 7 = 2 + 5t

<u>Step 2: Solve for </u><u><em>t</em></u>

  1. [Subtraction Property of Equality] Isolate <em>t</em> terms:                                        7 = 2 + 2t
  2. [Subtraction Property of Equality] Isolate <em>t</em> term:                                         5 = 2t
  3. [Division Property of Equality] Isolate <em>t</em>:                                                        5/2 = t
  4. Rewrite:                                                                                                             t = 5/2
6 0
3 years ago
Read 2 more answers
Of all rectangles with area 324324​, which one has the minimum​ perimeter? Let P and w be the perimeter and​ width, respectively
ra1l [238]

Answer:

For w = 18 units perimeter is minimum

P = 2(18 + w)

Step-by-step explanation:

Given;

Area of the rectangle = 324 units²

P is the perimeter

w is the width

Let L be the length of the rectangle

therefore,

P = 2(L + w)  ............(1)

also,

Lw = 324

or

L = \frac{324}{w} ..........(2)

substituting 2 in 1

P = 2(\frac{324}{w} + w)

now,

for minimizing the perimeter

\frac{dp}{dw}=\frac{d(2(\frac{324}{w} + w))}{dw} = 0

or

2((-1)\frac{324}{w^2}+1) = 0

or

(-1)\frac{324}{w^2}+1 = 0

or

(-1)\frac{324}{w^2} = -1

or

w² = 324

or

w = 18 units

For w = 18 units perimeter is minimum

therefore,

from 2

L = \frac{324}{18}

or

L = 18 units

objective function for P is:

P = 2(18 + w)

8 0
3 years ago
Other questions:
  • Somenone help im faling horribly there is two qestion I need help on any one know both
    10·1 answer
  • The graph of a logarithmic has a vertical asymptote at x=4 , contains the point (e+4, 1) , and has an x-intercept of 5. Which fu
    8·1 answer
  • Solve this answer for me and explain it e/2&lt;-0.5
    9·1 answer
  • Can somebody explain how to do this problem?
    10·2 answers
  • Work out<br> (2+√3)(2−√3)
    5·2 answers
  • 1.<br> Find the product of -12 and -6.
    13·1 answer
  • Which of the follwing is not a pythagorean triple 10,16 19<br>8,15,17<br>16,63,65<br>11,60,61​
    11·1 answer
  • Determine the number of solutions for each equation
    9·1 answer
  • 10x+17+5y+3 what is the answer to my question
    5·2 answers
  • Anyone know how to solve these
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!