He got shot at the new orland street corner
31-40. C. 12 students sold that many, therefore it's the most.
Yess, such fun so
q=number of quarter
n=number of nickles
q+n=63
9.15=915 cents
25 cents=1 q
5 cents=1 n so
915=25q+5n
915=5(5q+n)
divide by 5
183=5q+n
we also have q+n=63
subtract q from both sides
n=63-q
subsitute 63-q for n in second equation
183=5q+63-q
add like terms
183=4q+63
subtract 63 from both sides
120=4q
divdie by 4
30=q
there were 30 quarters
subsitute
63=30+n
subtract 30
33=n
30 quarters
33 nicles
Answer:
![\large\boxed{1.\ f^{-1}(x)=4\log(x\sqrt[4]2)}\\\\\boxed{2.\ f^{-1}(x)=\log(x^5+5)}\\\\\boxed{3.\ f^{-1}(x)=\sqrt{4^{x-1}}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B1.%5C%20f%5E%7B-1%7D%28x%29%3D4%5Clog%28x%5Csqrt%5B4%5D2%29%7D%5C%5C%5C%5C%5Cboxed%7B2.%5C%20f%5E%7B-1%7D%28x%29%3D%5Clog%28x%5E5%2B5%29%7D%5C%5C%5C%5C%5Cboxed%7B3.%5C%20f%5E%7B-1%7D%28x%29%3D%5Csqrt%7B4%5E%7Bx-1%7D%7D%7D)
Step-by-step explanation:


![\log_55^{\frac{1}{4}y}=\log_5\left(2^\frac{1}{4}x\right)\qquad\text{use}\ a^\frac{1}{n}=\sqrt[n]{a}\\\\\dfrac{1}{4}y=\log(x\sqrt[4]2)\qquad\text{multiply both sides by 4}\\\\y=4\log(x\sqrt[4]2)](https://tex.z-dn.net/?f=%5Clog_55%5E%7B%5Cfrac%7B1%7D%7B4%7Dy%7D%3D%5Clog_5%5Cleft%282%5E%5Cfrac%7B1%7D%7B4%7Dx%5Cright%29%5Cqquad%5Ctext%7Buse%7D%5C%20a%5E%5Cfrac%7B1%7D%7Bn%7D%3D%5Csqrt%5Bn%5D%7Ba%7D%5C%5C%5C%5C%5Cdfrac%7B1%7D%7B4%7Dy%3D%5Clog%28x%5Csqrt%5B4%5D2%29%5Cqquad%5Ctext%7Bmultiply%20both%20sides%20by%204%7D%5C%5C%5C%5Cy%3D4%5Clog%28x%5Csqrt%5B4%5D2%29)
![--------------------------\\2.\\y=(10^x-5)^\frac{1}{5}\\\\\text{Exchange x and y. Solve for y:}\\\\(10^y-5)^\frac{1}{5}=x\qquad\text{5 power of both sides}\\\\\bigg[(10^y-5)^\frac{1}{5}\bigg]^5=x^5\qquad\text{use}\ (a^n)^m=a^{nm}\\\\(10^y-5)^{\frac{1}{5}\cdot5}=x^5\\\\10^y-5=x^5\qquad\text{add 5 to both sides}\\\\10^y=x^5+5\qquad\log\ \text{of both sides}\\\\\log10^y=\log(x^5+5)\Rightarrow y=\log(x^5+5)](https://tex.z-dn.net/?f=--------------------------%5C%5C2.%5C%5Cy%3D%2810%5Ex-5%29%5E%5Cfrac%7B1%7D%7B5%7D%5C%5C%5C%5C%5Ctext%7BExchange%20x%20and%20y.%20Solve%20for%20y%3A%7D%5C%5C%5C%5C%2810%5Ey-5%29%5E%5Cfrac%7B1%7D%7B5%7D%3Dx%5Cqquad%5Ctext%7B5%20power%20of%20both%20sides%7D%5C%5C%5C%5C%5Cbigg%5B%2810%5Ey-5%29%5E%5Cfrac%7B1%7D%7B5%7D%5Cbigg%5D%5E5%3Dx%5E5%5Cqquad%5Ctext%7Buse%7D%5C%20%28a%5En%29%5Em%3Da%5E%7Bnm%7D%5C%5C%5C%5C%2810%5Ey-5%29%5E%7B%5Cfrac%7B1%7D%7B5%7D%5Ccdot5%7D%3Dx%5E5%5C%5C%5C%5C10%5Ey-5%3Dx%5E5%5Cqquad%5Ctext%7Badd%205%20to%20both%20sides%7D%5C%5C%5C%5C10%5Ey%3Dx%5E5%2B5%5Cqquad%5Clog%5C%20%5Ctext%7Bof%20both%20sides%7D%5C%5C%5C%5C%5Clog10%5Ey%3D%5Clog%28x%5E5%2B5%29%5CRightarrow%20y%3D%5Clog%28x%5E5%2B5%29)

Answer:
About 36%.
Step-by-step explanation:
The formula for the rate of return on investment is the total value minus the initial cost divided by the initial cost.
The total value is $1,500. The initial cost is $1,100.
(1,500 - 1,100) / 1,100 = 400 / 1,100 = 4 / 11 = 0.363636363636
So, Dean's rate of return on investment is about 36%.
Hope this helps!