Answer:
0.80 m
Explanation:
elastic potential energy formula
elastic potential energy = 0.5 × spring constant × (extension) 2
The used work of energy output is 496*2.1=1041.6 J. And the actual work of energy output is 1127*0.85=957.95 J. The percentage efficiency is 957.95/1041.6*100%=91.97 %.
Answer:
792 J
Explanation:
The total energy of the ball is E = U + K where U = potential energy = mgh and K = kinetic energy = 1/2mv²
E = mgh + 1/2mv² where m = mass of ball = 2.0 kg, g = acceleration due to gravity = 9.8 m/s², h = height of building = 20.0 m, v = initial velocity of ball = 20.0 m/s.
So, substituting the values of the variables into E, we have
E = mgh + 1/2mv²
= 2.00 kg × 9.8 m/s² × 20.0 m + 1/2 × 2.00 kg × (20.0 m/s)²
= 392 J + 400 J
= 792 J
here we can say that net force on the student vertically upwards will be counter balance by his weight downwards
Let net force F is exerted by each hand
so here we will have




so the force exerted by each hand will be 414.1 N