Ms. Cassidy instructed Miguel to change one sign of the graph of y < 2x – 4 so that point (2, 3) can be included in the solution set.
To check which of the given options might Miguel write we check the inequality that holds true for the point (2,3).Substituting x=2 ,y=3 we have:
1) y < 2x – 1
3<2(2)-1
3<3 Not True.
2)y ≤ 2x – 4
3≤ 2(2) -4
3≤ 0 .Not true.
3) y > 2x – 4
3> 2(2)-4
3> 0 True.
4) y < 2x + 4
3<2(2)+4
3<8 True
5) .y < 3.5x – 4
3< 3.5(2)-4
3<3 Not true
6) y < 4x – 4
3<4(2)-4
3<4 True.
Options 3 ,4 ,6 holds true for the point (2,3)
Answer:
The area of the regular nonagon is 7921.8 square inches.
Step-by-step explanation:
Geometrically speaking, the area of a regular polygon is determined by following area formula:
(1)
Where:
- Area of the regular polygon, in square inches.
- Perimeter, in inches.
- Apothem, in inches.
If we know that
and
, then the area of the regular nonagon is:

The area of the regular nonagon is 7921.8 square inches.
I think it is ................A
56400 ÷ 0.332
<span>169879 total people
</span>
Hope this helps!