The resultant vector can be determined by the component vectors. The component vectors are vector lying along the x and y-axes. The equation for the resultant vector, v is:
v = √(vx² + vy²)
v = √[(9.80)² + (-6.40)²]
v = √137 or 11.7 units
Answer:
Velocity is 2.17 m/s at an angle of 9.03° above X-axis.
Explanation:
Mass of object 1 , m₁ = 300 g = 0.3 kg
Mass of object 2 , m₂ = 400 g = 0.4 kg
Initial velocity of object 1 , v₁ = 5.00i-3.20j m/s
Initial velocity of object 2 , v₂ = 3.00j m/s
Mass of composite = 0.7 kg
We need to find final velocity of composite.
Here momentum is conserved.
Initial momentum = Final momentum
Initial momentum = 0.3 x (5.00i-3.20j) + 0.4 x 3.00j = 1.5 i + 0.24 j kgm/s
Final momentum = 0.7 x v = 0.7v kgm/s
Comparing
1.5 i + 0.24 j = 0.7v
v = 2.14 i + 0.34 j
Magnitude of velocity

Direction,

Velocity is 2.17 m/s at an angle of 9.03° above X-axis.
<span>D) Electromagnetic radiation travels in the form of longitudinal waves.</span>
Answer:
The first minimum would be observed at 41.57°
Explanation:
v = 340m/s = speed of sound
f = 610Hz
d = 0.840m
λ = ?
Mλ = wsinθ
m = mth order minima
λ = wavelength incident on the single slit
θ = angular position of the mth minima
But, λ = v / f
λ = 340 / 610 = 0.557m
θ = sin⁻(mλ/d)
θ = sin⁻ [(1 * 0.557) / 0.840]
θ = sin⁻ 0.6635
θ = 41.57°
The first minimum would be observed at 41.57°
The answer should be d because they are constantly rotating