<span>Answer:
No, because Einstein demonstrated that nothing can exceed the speed of light in a vacuum and for something to happen instantly over that distance would require that speed to be exceeded. If somehow the sun were to vanish, without explosive effects, an enormous gravity wave would begin travelling outward affecting the planets at the speed of light - thus taking about 8 minutes to reach earth.
But that is irrelevant because the only way to remove all that matter would be total conversion of the mass to energy and that energy would totally destroy everything - after the same 8 minutes.
Mike1942f · 9 years ago</span>
Answer:
a) w = 7.27 * 10^-5 rad/s
b) v1 = 463.1 m/s
c) v1 = 440.433 m/s
Explanation:
Given:-
- The radius of the earth, R = 6.37 * 10 ^6 m
- The time period for 1 revolution T = 24 hrs
Find:
What is the earth's angular speed?
What is the speed of a point on the equator?
What is the speed of a point on the earth's surface located at 1/5 of the length of the arc between the equator and the pole, measured from equator?
Solution:
- The angular speed w of the earth can be related with the Time period T of the earth revolution by:
w = 2π / T
w = 2π / 24*3600
w = 7.27 * 10^-5 rad/s
- The speed of the point on the equator v1 can be determined from the linear and rotational motion kinematic relation.
v1 = R*w
v1 = (6.37 * 10 ^6)*(7.27 * 10^-5)
v1 = 463.1 m/s
- The angle θ subtended by a point on earth's surface 1/5 th between the equator and the pole wrt equator is.
π/2 ........... s
x ............ 1/5 s
x = π/2*5 = 18°
- The radius of the earth R' at point where θ = 18° from the equator is:
R' = R*cos(18)
R' = (6.37 * 10 ^6)*cos(18)
R' = 6058230.0088 m
- The speed of the point where θ = 18° from the equator v2 can be determined from the linear and rotational motion kinematic relation.
v2 = R'*w
v2 = (6058230.0088)*(7.27 * 10^-5)
v2 = 440.433 m/s
Answer:
m = 3 kg
The mass m is 3 kg
Explanation:
From the equations of motion;
s = 0.5(u+v)t
Making t thr subject of formula;
t = 2s/(u+v)
t = time taken
s = distance travelled during deceleration = 62.5 m
u = initial speed = 25 m/s
v = final velocity = 0
Substituting the given values;
t = (2×62.5)/(25+0)
t = 5
Since, t = 5 the acceleration during this period is;
acceleration a = ∆v/t = (v-u)/t
a = (25)/5
a = 5 m/s^2
Force F = mass × acceleration
F = ma
Making m the subject of formula;
m = F/a
net force F = 15.0N
Substituting the values
m = 15/5
m = 3 kg
The mass m is 3 kg
Answer:
Option D
670 Kg.m/s
Explanation:
Initial momentum is given by mv=82*5.6=459.2 Kg.m/s (taking eastward as positive)
Final momentum is also mv but v being westward direction, we take it negative
Final momentum=82*-2.5= -205 Kg.m/s
Change in momentum=Final momentum-Initial momentum=-205-459.2=-664.2 Kg.m/s
Impulse=change in momentum=664.2 Kg.m/s rounded off as 670 Kg.m/s
1.96s and 1.86s. The time it takes to a spaceship hovering the surface of Venus to drop an object from a height of 17m is 1.96s, and the time it takes to the same spaceship hovering the surface of the Earth to drop and object from the same height is 1.86s.
In order to solve this problem, we are going to use the motion equation to calculate the time of flight of an object on Venus surface and the Earth. There is an equation of motion that relates the height as follow:

The initial velocity of the object before the dropping is 0, so we can reduce the equation to:

We know the height h of the spaceship hovering, and the gravity of Venus is
. Substituting this values in the equation
:

To calculate the time it takes to an object to reach the surface of Venus dropped by a spaceship hovering from a height of 17m, we have to clear t from the equation above, resulting:
Similarly, to calculate the time it takes to an object to reach the surface of the Earth dropped by a spaceship hovering from a height of 17m, and the gravity of the Earth
.
