Answer:
v' = 2.4 m/s
Explanation:
Given that,
Mass of one skater, m = 60 kg
Mass of the other's skater, m' = 60 kg
The two skaters push off each other. After the push, the smaller skater has a velocity of 3.0 m/s.
When there is no external force acting on a system, the momentum remains conserved. It means initial momentum is equal to the final momentum. Let v' is the velocity of the larger skater.
mv = m'v'

So, the velocity of the larger skater is 2.4 m/s.
Answer:
57m
Explanation:
speed = 5.7m/s
or 57/10 m/s
so definitely the time taken will be 10 secs
so speed = distance/time taken
5.7= distance/10
distance = 5.7× 10
Distance = 57m
Answer:
Slip Rings
Explanation:
The wound rotor motor has a three-phase winding with each one connected to seperate slip rings. These slip rings contain brushes which form a secondary circuit where resistance can be inserted and this will allow for the rotor current to run more in phase with the stator current which will result in increased torque that is created
Answer:
Explanation:
Compression
The region in a medium where the distance between the vibrating molecules is minimum is compression.
This is the region with higher air pressure than the surrounding .
Rarefaction
The region in a medium where the distance between the vibrating molecules is maximum is rarefaction.
This is the region with relatively low air pressure.
hope it helps :)
Answer:
Both balls have the same speed.
Explanation:
Janelle throws the two balls from the same height, with the same speed. Both balls will have the same potential and kinetic energy. Energy must be conserved. When the balls pass Michael, again they must have the same potential and kinetic energy.