Explanation:
(a) Draw a free body diagram of the cylinder at the top of the loop. At the minimum speed, the normal force is 0, so the only force is weight pulling down.
Sum of forces in the centripetal direction:
∑F = ma
mg = mv²/RL
v = √(g RL)
(b) Energy is conserved.
EE = KE + RE + PE
½ kd² = ½ mv² + ½ Iω² + mgh
kd² = mv² + Iω² + 2mgh
kd² = mv² + (m RC²) ω² + 2mg (2 RL)
kd² = mv² + m RC²ω² + 4mg RL
kd² = mv² + mv² + 4mg RL
kd² = 2mv² + 4mg RL
kd² = 2m (v² + 2g RL)
d² = 2m (v² + 2g RL) / k
d = √[2m (v² + 2g RL) / k]
Answer:
Pascal's law (also Pascal's principle or the principle of transmission of fluid-pressure) is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere.
At sea level, the size amid the 2 alkanes lets for pentane to simmer at a lower temperature than hexane. Phenol has a higher boiling point due to hydrogen bonding High altitude would have the same order while low pressure only cuts the temperature at which a solvent boils. Boiling has to do with molecular size, the occurrence/nonappearance of hydrogen bonds, and other steric issues.
So the answer would be pentane high altitude, hexane high altitude, hexane sea level, hexanol sea level. In order of boil first to boil last. This is clarified because altitude has a better effect on vapor pressure (and hence boiling points) than inter-molecular forces.