I do not understand but if you deposit 85 dollars in a bank account it will most likely be positive unless you owe the bank money.
Hope I helped
Brainliest if satisfied
Answer:
a) 1.8 × 10^-12 cm³ or 1.8 × 10^-12 cubic meters
b) 7.1 × 10^-6 mm² or 7.1 × 10^-6 square millimeters
Step-by-step explanation:
a) We are assuming that the shape of the bacteria is a sphere.
Hence, Volume of the Sphere(Bacteria) = 4/3 × π × r³
Diameter = 1.5 μm
Radius = Diameter/2 = 1.5μm/2
= 0.75μm
We are told that the volume should be in cubic centimeters
Converting 0.75μm to centimeters
1 μm = 1 × 10^-4 cm
0.75 μm =
Cross Multiply
= 0.75 μm × 1 × 10^-4 cm/ 1 μm
= 0.000075cm
Volume of the Sphere(Bacteria) = 4/3 × π × r³
= 4/3 × π × (0.000075)³
= 1.767145867 × 10^-12 cm³
Approximately as 2 significant figures = 1.8 × 10^-12 cm³
b) The formula for the Surface area of a Sphere = 4πr²
Diameter = 1.5 μm
Radius = Diameter/2 = 1.5μm/2
= 0.75μm
We are told that the surface area should be in square millimeters
Converting 0.75μm to millimeters
1 μm = 0.001 mm
0.75 μm =
Cross Multiply
= 0.75 μm ×0.001mm/ 1 μm
= 0.00075mm
Surface Area of a Sphere
= 4 × π × r²
= 4 × π × 0.00075²
= 7.06858 ×10^-6 mm²
Approximately to 2 significant figures
= 7.1 × 10^-6 mm²
so, let's keep in mind that

so let's make a quick table of those solutions, say A, B, C solutions with x,y,z liters of acid, with an acidity of 0.25, 0.40 and 0.60 respectively.

we know she's using "z" liters and those are 3 times as much as "y" liters, so z = 3y.
![\bf \begin{cases} x+y+3y=78\\ x+4y=78\\[-0.5em] \hrulefill\\ 0.25x+0.4y+0.6(3y)=35.1\\ 0.25x+0.4y=1.8y=35.1\\ 0.25x+2.2y=35.1 \end{cases}\implies \begin{cases} x+4y=78\\\\ 0.25x+2.2y=35.1 \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ x+4y=78\implies \boxed{x}=78-4y \\\\\\ \stackrel{\textit{using substitution on the 2nd equation}}{0.25\left( \boxed{78-4y} \right)+2.2y=35.1}\implies 19.5-y+2.2y=35.1](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20x%2By%2B3y%3D78%5C%5C%20x%2B4y%3D78%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%200.25x%2B0.4y%2B0.6%283y%29%3D35.1%5C%5C%200.25x%2B0.4y%3D1.8y%3D35.1%5C%5C%200.25x%2B2.2y%3D35.1%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20x%2B4y%3D78%5C%5C%5C%5C%200.25x%2B2.2y%3D35.1%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20x%2B4y%3D78%5Cimplies%20%5Cboxed%7Bx%7D%3D78-4y%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20substitution%20on%20the%202nd%20equation%7D%7D%7B0.25%5Cleft%28%20%5Cboxed%7B78-4y%7D%20%5Cright%29%2B2.2y%3D35.1%7D%5Cimplies%2019.5-y%2B2.2y%3D35.1)
![\bf 1.2y=15.6\implies y=\cfrac{15.6}{1.2}\implies \blacktriangleright y=13 \blacktriangleleft \\\\\\ x=78-4y\implies x=78-4(13)\implies \blacktriangleright x=26 \blacktriangleleft \\\\\\ z=3y\implies z=3(13)\implies \blacktriangleright z=39 \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{25\%}{26}\qquad \stackrel{40\%}{13}\qquad \stackrel{60\%}{39}~\hfill](https://tex.z-dn.net/?f=%5Cbf%201.2y%3D15.6%5Cimplies%20y%3D%5Ccfrac%7B15.6%7D%7B1.2%7D%5Cimplies%20%5Cblacktriangleright%20y%3D13%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5C%5C%20x%3D78-4y%5Cimplies%20x%3D78-4%2813%29%5Cimplies%20%5Cblacktriangleright%20x%3D26%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5C%5C%20z%3D3y%5Cimplies%20z%3D3%2813%29%5Cimplies%20%5Cblacktriangleright%20z%3D39%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7B25%5C%25%7D%7B26%7D%5Cqquad%20%5Cstackrel%7B40%5C%25%7D%7B13%7D%5Cqquad%20%5Cstackrel%7B60%5C%25%7D%7B39%7D~%5Chfill)
Answer:
Step-by-step explanation:
question no . 5
ratio of angle L
take angle as reference angle
using cos rule
cos L = base / hypotenuse
= 4/5
ratio of angle N
take angle N as reference angle
using sin rule
sin N = opposite / hypotenuse
= 4/5
for measure of angle L
cos L = 4/5
cos L = 0.8
L = 
L = 36.9
for meanure of angle N
sin N = 4/5
sin N = 0.8
N = 
N = 53.1
Step-by-step explanation:
<u>Given</u>
- f(x) = 4x³ + 3x² - 2x - 1
<u>Divide it by the following:</u>
<u>(a) 2x + 1</u>
- 4x³ + 3x² - 2x - 1 =
- (4x³ + 2x²) + (x² + 1/2x) - (5/2x + 5/4) + 1/4 =
- 2x²(2x+1) + 1/2x(2x + 1) - 5/4(2x + 1) + 1/4 =
- (2x + 1)(2x² + 1/2x - 5/4) + 1/4
Quotient = 2x² + 1/2x - 5/4
Remainder = 1/4
<u>(b) 2x - 3</u>
- 4x³ + 3x² - 2x - 1 =
- (4x³ - 6x²) + (9x² - 13.5x) + (11.5x - 17.25) + 16.25 =
- (2x -3)(2x² + 4.5x + 5.75) + 16.25
Quotient = 2x² + 4.5x + 5.75
Remainder = 16.25
<u>(c) 4x - 1</u>
- 4x³ + 3x² - 2x - 1 =
- (4x³ - x²) + (4x² - x) - (2x - 1/2) - 3/2 =
- (4x - 1)(x² + x - 1/2) - 3/2
Quotient = x² + x - 1/2
Remainder = - 3/2
<u>(d) x + 2</u>
- 4x³ + 3x² - 2x - 1 =
- (4x³ + 8x²) - (5x² + 10x) + (8x + 16) - 17 =
- (x + 2)(4x² - 5x + 8) - 17
Quotient = 4x² - 5x + 8
Remainder = - 17