A= 3
b= 4
=3.14(a^2 + ab)
substitute the given a & b values in expression
=3.14((3)^2 + (3*4))
multiply inside parentheses
=3.14(9 + 12)
add inside parentheses
=3.14(21)
multiply
=65.94
ANSWER: 65.94
Hope this helps! :)
Answer:
Option A is correct.
The given expression :
then;

Step-by-step explanation:
Given the expression: 
Cross multiplication the given expression following steps are as follow;
- Multiply numerator of the left-hand fraction by the denominator of the right-hand fraction
- Also, Multiply numerator of the right-hand fraction by the denominator of the left-hand fraction.
- then, set the two products equal to each other.
Using cross multiplication, on the given expression;

First multiply the numerator of the left hand fraction(i.e,a ) by the denominator of the right hand fraction (i,e a)
we have;

Simplify:
[1]
now, multiply numerator of the right-hand fraction( i.e, 9) by the denominator of the left-hand fraction (i.e, 4 ) in [1]
we have;

Simplify:

Therefore, the given expression is equal to: 
Step-by-step explanation:
3x + 10 < 3
3x + 7 < 0
3x < -7
x < -7/3 = -2.3333...
or
2x - 5 >= 5
2x >= 10
x >= 5
x < -7/3 or x >= 5
4. SOLVE FOR X:
Using the Alternate Interior Angles Theorem, we know that the 67 degree angle is congruent with the (12x - 5) degree angle. With this information, all I have to do is set the two equal to each other and solve for x.
67 = 12x - 5
67 + 5 = 12x - 5 + 5
72/12 = 12x/12
6 = x
x = 6
SOLVE FOR Y:
Using the Vertical Angles theorem, we know that angle y must be congruent to the 67 degree angle.
y = 67 degrees.
5. SOLVE FOR Y:
Alternate exterior angles: 6(x - 12) = 120
6x - 72 + 72 = 120 + 72
6x/6 = 192/6
x = 32
SOLVE FOR Y:
6((32) - 12) + y = 180
192 - 72 + y = 180
120 + y - 120 = 180 - 120
y = 60
Answer:
y=5x+127
Step-by-step explanation:
Equations of straight lines are in the form : y = mx + c
m is the slope of the line and c is the y-intercept (where the graph crosses the y-axis)
m=5
x=127
y=5x+127