Answer:
(a) False;
(b) False;
(c) False;
(d) True.
Explanation:
(a) When equilibrium is reached, the forward reaction rate becomes equal to the reverse reaction rate, that's why the molarity of each species remains constant, but reactions don't stop.
(b) According to the principle of Le Chatelier, an increase in molarity of either reactants or products would lead to a disturbance of equilibrium. This disturbance would lead to the shift of equilibrium towards the side which would minimize such a disturbance.
(c) Equilibrium constant is only temperature-dependent, it's independent of molarity, pressure, volume etc. of any species present in the reaction.
(d) The greater the initial molarity of reactants, the more products can be formed, e. g., since the ratio of products to reactants should be kept constant, the larger the amount of reactants, the greater the amount of products formed to keep a constant ratio.
Answer:
mL of NaOH required =29.9mL
Explanation:
Let us calculate the moles of vitamin C in the tablet:
The molar mass of Vitamin C is 176.14 g/mole

Thus we need same number of moles of NaOH to reach the equivalence point.
For NaOH solution:



+5
Explanation:
The given radical is PO₄³⁻
To solve this problem, we need to understand what oxidation number entails.
The extent of the oxidation of each atom is expressed by the oxidation number.
Here are some rules for assigning them:
- Elements in an uncombined state or elements that combines with one another, their oxidation number is zero.
- The charge on an ion is its oxidation number
- In an neutral compound, algebraic sum of all the oxidation numbers of all atoms is zero.
- In a radical, the algebraic sum of all the oxidation numbers of the ions is equal to the charge on them.
Oxygen is known to have an oxidation number of -2;
PO₄³⁻
P + 4(-2) = -3
P -8 = -3
P = -3 + 8 = +5
The charge on phosphorus is +5
learn more:
Oxidation number brainly.com/question/2086855
#learnwithbrainly