Answer : The final pressure will be, 666.2 mmHg
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

or,

where,
= initial pressure = 790 mmHg
= final pressure = ?
= initial volume = 101.2 mL
= final volume = 120 mL
Now put all the given values in the above equation, we get:


Therefore, the final pressure will be, 666.2 mmHg
Answer:
12.33 cal/sec
Explanation:
As we know,
1 Kcal = 1000 cal
So,
0.74 Kcal = X cal
Solving for X,
X = (0.74 Kcal × 1000 cal) ÷ 1 Kcal
X = 740 cal
Also we know that,
1 Minute = 60 Seconds
Therefore, in order to derive cal/sec unit replace 0.74 Kcal by 740 cal and 1 min by 60 sec in given unit as,
= 740 cal / 60 sec
= 12.33 cal/sec
As the temperature of a liquid increases, its viscosity decreases.
Answer:
The general formula for the carboxylic acids is C nH 2n+1COOH (where n is the number of carbon atoms in the molecule, minus 1).
Explanation:
<em>Hope </em><em>it </em><em>helps </em><em>u </em>
FOLLOW MY ACCOUNT PLS PLS
The empirical formula is = C2H4O2
Molecular formula=C2H4O2
<h3>Calculation of
Molecular formula and empirical formula:-</h3>
Vinegar has three elements:
oxygen = 53.29%,
hydrogen = 6.70%,
and carbon = 40.01%.
We can create an equation for the total mass of vinegar with 'a' carbon atom,' b' hydrogen atom, and 'c' oxygen atoms using the molar masses of C, H, and O.
12*a + 1*b + 16*c = 60
We also know that C makes up 24 g/mol, or 40.01 percent, of the overall mass of 60 g/mol.
The formula contains two C atoms because each C atom has a molecular mass of 12 g/mol. You may determine that the formula contains 4 H and 2 O atoms by using the same reasoning for H and O.
The empirical formula is = C2H4O2
Molecular formula= (C2H4O2)n
(4 x 12 + 1 x 4 + 16 x 2)n = 60
(84)n = 60
n=60/84
n=0.71=1
Molecular formula=C2H4O2
Learn more about Molecular and empirical formulas here:-
brainly.com/question/9207476
#SPJ4