Answer:
A hot air balloon uses a burner to heat up the air inside the balloon. The burner is usually fueled by liquid propane. The burner mixes the fuel with air and ignites the mixture, which creates a flame directly underneath the bottom opening of the hot air balloon. Once the air inside the balloon begins to get warm, the balloon will rise. The pilot controls the balloon’s altitude by releasing hot air from a vent at the top of the balloon, releasing the warmer air causes the balloon to descend.
Explanation:
Answer:
25.53mL of 0.200 M FeCl₃ are needed to produce 0.345g of Fe₂S₃
Explanation:
Based on the reaction of the problem, 1 mole of Fe₂S₃ is produced from 2 moles of FeCl₃.
0.345g of Fe₂S₃ are (Molar mass: 207.9g/mol):
0.345g of Fe₂S₃ ₓ (1 mol / 207.9g) = <em>1.6595x10⁻³ moles Fe₂S₃</em>
Moles of Fe needed to produce these moles of Fe₂S₃ are:
1.6595x10⁻³ moles Fe₂S₃ ₓ ( 2 moles FeCl₃ / 1 mole Fe₂S₃) =
<em>3.3189x10⁻³ moles of FeCl₃</em>
As the percent yield of the reaction is 65.0%, the moles of FeCl₃ you need to add are:
3.3189x10⁻³ moles of FeCl₃ ₓ (100.0% / 65.0%) = <em>5.106x10⁻³ moles of FeCl₃</em>
A solution 0.200M contains 0.200 moles per L. Volume to obtain 5.106x10⁻³ moles is:
<em>5.106x10⁻³ moles of FeCl₃ ₓ ( 1L / 0.200mol) = 0.02553L = </em>
<h3>25.53mL of 0.200 M FeCl₃ are needed to produce 0.345g of Fe₂S₃</h3>
Answer:
C) It has a constant average kinetic energy
Explanation:
The average kinetic energy of the particles in a gas is directly proportional to the temperature of the gas, according to the equation.
k is the Boltzmann's constant
T is the absolute temperature of the gas
Therefore, temperature of a gas is a measure of the average kinetic energy of the particles.
In this problem, we are told that the gas is at constant temperature (and volume): therefore, according to the previous equation, this means that the average kinetic energy is also constant.
Answer: Ethyl Ethanoate can be used as a developing solvent. It’s safer.
Explanation:Di ethyl ether should be carefully used because it’s highly flammable and intoxicating when inhaled and can cause explosions because of its high reactivity to air and light.