Solid! The molecules in solid matter are arranged closely together and packed quite tightly to maintain a regular shape. Hope this helps!
Answer: The first isotope has a relative abundance of 79% and last isotope has a relative abundance of 11%
Explanation: Given that the average atomic mass(M) of magnesium
= 24.3050amu
Mass of first isotope (M1) = 23.9850amu
Mass of middle isotope (M2)=24.9858amu
Mass of last isotope(M3)= 25.9826amu
Total abundance = 1
Abundance of middle isotope = 0.10
Let abundance of first and last isotope be x and y respectively.
x+0.10+y =1
x = 0.90-y
M = M1 × % abundance of first isotope + M2 × % of middle isotope +M3 ×% of last isotope
24.03050= 23.985× x + 24.9858 ×0.10 + 25.9826×y
Substitute x= 0.90-y
Then
y = 0.11
Since y=0.11, then
x= 0.90-0.11
x=0.79
Therefore the relative abundance of the first isotope = 11% and the relative abundance of the last isotope = 79%
Answer:
The warmer, lighter air rises, bringing cooler, heavier air to low altitudes.
Air at higher altitudes doesn't have as much air weighing down on it from above.
Explanation:
In short - air pressure is the result of the cumulative force that air molecules act on objects below them due to Earth's gravity. The higher the altitude, the less air molecules there are to act a force below them, and therefore, there's less air pressure at higher altitudes.
So,
Formate has a resonating double bond.
In molecular orbital theory, the resonating electrons are actually delocalized and are shared between the two oxygens. So the carbon-oxygen bonds can be described as 1.5-bonds (option B). I'm not sure if option C is correct, however, because the likelihood of both delocalized electrons being in the area of one oxygen atom is less than 50%.<span />
Let's go over the given information. We have the volume, temperature and pressure. From the ideal gas equation, that's 4 out of 5 knowns. So, we actually don't need Pvap of water anymore. Assuming ideal gas, the solution is as follows:
PV=nRT
Solving for n,
n = PV/RT = (753 torr)(1 atm/760 torr)(195 mL)(1 L/1000 mL)/(0.0821 L·atm/mol·K)(25+273 K)
n = 7.897×10⁻³ mol H₂
The molar mass of H₂ is 2 g/mol.
Mass of H₂ = 7.897×10⁻³ mol * 2 g/mol = <em>0.016 g H₂</em>