Resources that come from nature, some examples include: Water, Gold, Oil, Coal, Apples, Oranges, etc.
Answer: Molecules of gas are usually far apart and can be compressed unlike molecules of liquids.
Explanation:
The molecules of gases are usually far apart, moving freely and randomly, occupying extra space in the containing vessel. Hence, when compressed to become closely packed, gases have lower volume.
However, unlike gases, the molecules of a liquid are restricted, move less freely and occupy no extra space. Hence, liquids cannot be compressed, and their volume remains the same in their containing vessel.
Hey there!:
8) ΔTb = i*Kb*m
m is molality
Since same number of mol is added to same amount of water in both cases
m will be same for both
is 1 for glucose since it is covalent compound
is 4 of Al(NO3)3 as it breaks into 1 Al₃⁺ and 3 NO₃⁻
So, ΔTb will be 4 times in aluminum nitrate case
So, boiling point will change by 4ºC
9) use Q = m* L
L = heat of vaporization so:
T1=T2=100ºC
5.40 * 1000 => 5400 cal/g
Q = 5400 / 540
Q = 10 grams
Hope that thlps!
Answer is: 2,0,0,±1/2.
1) n = 1. The principal quantum number (n) is one of four quantum numbers which are assigned to each electron in an atom to describe that electron's state.
2) l = 0. The azimuthal quantum number is a quantum number for an atomic orbital that determines its orbital angular momentum and describes the shape of the orbital.
3) ml = 0. Magnetic quantum number specify orientation of electrons in magnetic field and number of electron states (orbitals) in subshells.
Magnetic quantum number (ml) specifies the orientation in space of an orbital of a given energy and shape . Magnetic quantum number divides the subshell into individual orbitals which hold the electrons, there are 2l+1 orbitals in each subshell.
4) The spin quantum number, ms, is the spin of the electron; ms = +1/2 or -1/2.
The balanced chemical reaction is expressed as follows:
<span>CuCl2 (aq) + 2AgNO3 (aq) → 2AgCl (s) + CuNO32 (aq)
To determine the </span><span>concentration of copper(II) chloride contaminant in the original groundwater sample, we use the final amount of silver chloride that was produced from the reaction and the relation of the substances from the chemical reaction. We calculate as follows:
mmol AgCl = 6.1 mg AgCl ( 1 mmol / 143.35 mg ) = 0.0426 mmol
mmol CuCl2 = </span>0.0426 mmol AgCl ( 1 mmol CuCl2 / 2 mmol AgCl ) = 0.0213 mmol CuCl2
concentration of CuCl2 in the original water sample = 0.0213 mmol CuCl2 / 200.0 mL = 1.0638 x 10^-4 mmol / mL or 1.0638 x 10^-4 mol/L