Answer:
48 ways
Step-by-step explanation:
Let me take a guess
S₁_₁₅ = (1+15)*7 + 8 = 120
There are 48 combinations of distinct digits from 1 to 15 to make 20
120-20=100
So every 20 has a corresponding 100
I wish I got it right, otherwise report it.
Answer:
1. 1/7
2. 3/10
Step-by-step explanation:
4/28 can be divided by 4
24/80 can be divided by 8
Answer:
1. (3^3 + 3^2)^2 actually equals (27 + 9)^2
which is the first mistake
2. (27 + 9)^2 does not equal (3^5)2, so (36)^2 does not equal 3^7
3. 3^7 DOES NOT EQUAL 21
Step-by-step explanation:
when you add powered numbers together, it does not multiply it, as your example:
1. (3^3 + 3^2)^2 actually equals (27 + 9)^2
which is the first mistake
2. (27 + 9)^2 does not equal (3^5)2, so (36)^2 does not equal 3^7
3. 3^7 DOES NOT EQUAL 21
Answer:
2x + 12y + 43 ≥ 40
17x + 12y + 8z ≥ 20
14x + 6y + z ≤ 50
x ≥ 0
y ≥ 0
z ≥ 0
Step-by-step explanation:
given:
Cost Eggs = $2
Cost of edema = $5
cost of elbow Macaroni = $3
Lets eggs = x,
edamame = y
elbow macaroni = z
TC = 2x+5y+3z
Therefore;
2x + 12y + 43 ≥ 40
17x + 12y + 8z ≥ 20
14x + 6y + z ≤ 50
x ≥ 0
y ≥ 0
z ≥ 0
the first objective is to make sure the total cost is subject to the required nutritional requirements.
So the total cost function (TC) is denoted by the number of servings multiplied for each costs. Eggs cost $2, edamame $5, and macaroni $3.
The problem subjects that each meal contains at least 40g of carbohydrates (this is the condition).
to get this we need to add what each meal component adds to the total, eggs add 2g of carbs, edamame 12g, and macaroni 43g.
Same should be done for protein, we require at least 20 grams of protein, Eggs add 17g, edamame adds 12g, and macaroni adds 8g.
and lastly we don't want more than 50 grams of fat, Eggs add 14g, edamame add 6g and macaroni 1g.
Answer:
the conditional probability that X = 1 , X = 2 and X = 3 is 0.7333 (73.33%) , 0.25 (25%) and 0.0167 (1.67%) respectively
Step-by-step explanation:
a player wins money when i>0 then defining event W= gain money , then
P(W) = p(i>0) = p(1)+p(2)+p(3)
then the conditional probability can be calculated through the theorem of Bayes
P(X=1/W)= P(X=1 ∩ W)/P(W)
where
P(X=1 ∩ W)= probability that the payout is 1 and earns money
P(X=1 / W)= probability that the payout is 1 given money was earned
then
P(X=1/W)= P(X=1 ∩ W)/P(W) = P(X=1) / P(W) = p(1) /[p(1)+p(2)+p(3)] = 11/40 /(11/40+3/32+1/160
) = 0.7333 (73.33%)
similarly
P(X=2/W)=p(2) /[p(1)+p(2)+p(3)] = 3/32 /(11/40+3/32+1/160
) = 0.25 (25%)
P(X=3/W)=p(2) /[p(1)+p(2)+p(3)] = 1/160 /(11/40+3/32+1/160
) = 0.0167 (1.67%)