Answer:
a) t = 4.14 s
b) Speed with which it hits the ground = 40.58 m/s
Explanation:
Using the equations of motion,
g = 9.8 m/s², y = H = 84 m,
Initial velocity, u = 0 m/s,
final velocity, v = ?
Total Time of fall, t = ?
a) y = ut + gt²/2
84 = 0 + 9.8t²/2
4.9t² = 84
t² = 84/4.9
t = 4.14 s
b) v = u + gt
v = 0 + (9.8 × 4.14)
v = 40.58 m/s
The purpose of the fraud fighter or also known as black
light machine is that it has the ability to check counterfeited bills. It is
designed to be a detector with the counterfeited bills, plus, it is a way of
verification. It is composed of a UV light, where in, making it have the
ability to detect the counterfeited bills which is its task to do.
Suppose that the cyclist begins his journey from the rest from the top of a wedge with a slope of a degree above the horizontal.
At point A (where it starts its journey), the energy is:
Ea = m * g * h
In other words, energy is only potential.
At point B (located at the bottom of the wedge), the energy is:
Eb = (1/2) * (m) * (v ^ 2)
In other words, the energy is only kinetic.
For energy conservation we have:
Ea = Eb
That is, we have that all potential energy is transformed into kinetic energy.
Which means that the cyclist has less kinetic energy at point A because that's where he has more potential energy.
answer:
the cyclist has less kinetic energy at point A because that's where he has more potential energy.
The study of EM is essential to understanding the properties of light, its propagation through tissue, scattering and absorption effects, and changes in the state of polarization. ... Since light travels much faster than sound, detection of the reflected EM radiation is performed with interferometry.