There are no appropriate units for power on the list you provided
Answer:
(a) 
(b) 
(c) K.E. = 21.168 J
(d) 
Explanation:
Given:
- mass of a block, M = 3.6 kg
- initial velocity of the block,

- constant downward acceleration,

That a constant upward acceleration of
is applied in the presence of gravity.
∴
- height through which the block falls, d = 4.2 m
(a)
Force by the cord on the block,



∴Work by the cord on the block,


We take -ve sign because the direction of force and the displacement are opposite to each other.

(b)
Force on the block due to gravity:

∵the gravity is naturally a constant and we cannot change it


∴Work by the gravity on the block,



(c)
Kinetic energy of the block will be equal to the net work done i.e. sum of the two works.
mathematically:


K.E. = 21.168 J
(d)
From the equation of motion:

putting the respective values:

is the speed when the block has fallen 4.2 meters.
-- She went up for 0.4 sec and down for 0.4 sec.
-- The vertical distance traveled in gravity during ' t ' seconds is
D = (1/2) x (g) x (t)²
= (1/2) (9.8 m/s²) (0.4 sec)²
= (4.9 m/s²) x (0.16 s²)
= 0.784 meter ( B )
Answer:
0.02
Explanation:
coefficient of kinetic friction = μ
force of friction = Ff
Normal Force = FN, but
FN = -W
Ff = -μFN
so μ = Ff/FN
= 4N/200N
= 0.02.
Answer:
a=F/m
a=12N/3kg (here newton can be written as kgm/s^2 so kg will be cancelled)
a=4m/s^2
Explanation: