The correct answer is D . Milk
Well they buy food then they cook it then they eat it
Explanation:
(a) Formula that shows relation between
and
is as follows.
Here,
= 1
Putting the given values into the above formula as follows.
= 
= 
= 0.01316
(b) As the given reaction equation is as follows.

As there is only one gas so
,
= 1.20
Therefore, pressure of
in the container is 1.20.
(c) Now, expression for
for the given reaction equation is as follows.
![K_{c} = \frac{[CaO][CO_{2}]}{[CaCO_{3}]}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%7B%5BCaO%5D%5BCO_%7B2%7D%5D%7D%7B%5BCaCO_%7B3%7D%5D%7D)
=
= \frac{x^{2}}{(a - x)}[/tex]
where, a = initial conc. of 
=
= 0.023 M
0.0131 =
x = 0.017
Therefore, calculate the percentage of calcium carbonate remained as follows.
% of
remained =
= 75.46%
Thus, the percentage of calcium carbonate remained is 75.46%.
Answer:
<u>The deviations are :</u>
- <u>The activation energy which changes with temperature</u>
- <u>The arrhenius constant which depends on the temperature</u>
Explanation:
- There are deviations from the Arrhenius law during the glass transition in all classes of glass-forming matter.
- The Arrhenius law predicts that the motion of the structural units (atoms, molecules, ions, etc.) should slow down at a slower rate through the glass transition than is experimentally observed.
- In other words, the structural units slow down at a faster rate than is predicted by the Arrhenius law.
- <em>This observation is made reasonable assuming that the units must overcome an energy barrier by means of a thermal activation energy. </em>
- The thermal energy must be high enough to allow for translational motion of the units <em>which leads to viscous flow of the material.</em>
- Both the Arrhenius activation energy and the rate constant k are experimentally determined, and represent macroscopic reaction-specific parameters <em>that are not simply related to threshold energies and the success of individual collisions at the molecular level. </em>
- Consider a particular collision (an elementary reaction) between molecules A and B. The collision angle, the relative translational energy, the internal (particularly vibrational) energy will all determine the chance that the collision will produce a product molecule AB.
- Macroscopic measurements of E(activation energy) and k(rate constant ) <em>are the result of many individual collisions with differing collision parameters. </em><em>They are averaged out to a macroscopic quantity.</em>