I believe it's B: series circuit
good luck
Alkenes must undergo addition because they have easily broken tt bonds.
Markonikov's rule states in the addition of HX to an unsymmetrical alkene, the H atom bonds to the less substituted carbon atom.
alkenes are unsaturated hydrocarbons because they have fewer than the maximum number of hydrogen atoms per carbon.
Alkyl halides have good leaving groups and therefore readily undergo substitution and elimination reactions.
In hydroboration, the boron atom bonds to the substituted carbon.
Hydroxides, amines and alcoxides undergo substitution and elimination, but can do so only when the heteroatom is made into a good leaving group.
Answer:
<h3>A. Epimers </h3>
Explanation:
<h2>Hope it help ❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️</h2>
Answer:
The bond dissociation energy to break 4 bonds in 1 mol of CH is 1644 kJ
Explanation:
Since there are 4 C-H bonds in CH₄, the bond dissociation energy of 1 mol of CH₄ is 4 × bond dissociation energy of one C-H bond.
From the table one mole is C-H bond requires 411 kJ, that is 411 kJ/mol. Therefore, 4 C-H bonds would require 4 × 411 kJ = 1644 kJ
So, the bond dissociation energy to break 4 bonds in 1 mol of CH₄ is 1644 kJ