1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lisa [10]
3 years ago
11

The length of a rectangle is 2.5 feet more than its width. If its area is 44.8 square feet,

Mathematics
1 answer:
RideAnS [48]3 years ago
8 0

width = 5.5 feet and

length = 8 feet

Step-by-step explanation:

Given:

Let Width = w

then length = 2.5 + w

Area = 44.8 square feet

Required:

Find length and Width

Formula:

Area = Length * Width

Putting values to find length and width

Area = Length * Width\\44.8=(2.5+w)*w\\44.8=2.5w+w^2\\w^2+2.5w-44.8=0\\Solving\,\,using\,\,quadratic\,\,formula:\\w=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\w=\frac{-(2.5)\pm\sqrt{(2.5)^2-4(1)(-44.8)}}{2(1)}\\w=\frac{-2.5\pm\sqrt{6.25+179.2}}{2}\\w=\frac{-2.5\pm\sqrt{185.45}}{2}\\w=\frac{-2.5\pm13.618}{2}\\w=\frac{-2.5+13.618}{2}\,\,and\,\,w=\frac{-2.5-13.618}{2}\\w=5.5\,\,and\,\,w=-8.1

So, value of w = 5.5 and -8.1

Since width can't be negative so,

Width = w = 5.5

Length = 2.5+w = 2.5+5.5 = 8

So, width = 5.5 feet and

length = 8 feet

Keywords: Area of rectangle

Learn more about Area of rectangle at:

  • brainly.com/question/8902155
  • brainly.com/question/6564657
  • brainly.com/question/6594923

#learnwithBrainly

You might be interested in
What does it mean when my dog is eating grass???
ankoles [38]

Answer:

Their stomach is upset. they eat the grass to calm their stomach. Don't worry it is good if your dog eats grass because that helps the dog's health out. Grass gives them vitamins and nutrients that helps their bowel system. seriously let you dog eat the grass, they will be okay. my four dogs do it as well and they feel better after. hope this helps

5 0
3 years ago
Solve this equation for X. If necessary, round your answer to the nearest integer<img src="https://tex.z-dn.net/?f=%282x%20%2B%2
Hatshy [7]

Answer

x = 1

Explanation:

Given the following equation

\begin{gathered} (2x+2)^{\frac{1}{2}}=\text{ -2} \\ \text{According to the law of indicies} \\ x^{\frac{1}{2}}\text{ = }\sqrt[]{x} \\ (2x+2)^{\frac{1}{2}}\text{ = }\sqrt[]{(2x\text{ + 2)}} \\ \text{Step 1: Take the square of both sides} \\ \sqrt[]{(2x\text{ + 2) }}\text{ = -2} \\ \sqrt[]{(2x+2)^2}=-2^2 \\ 2x\text{ + 2 = 4} \\ \text{Collect the like terms} \\ 2x\text{ = 4 - 2} \\ 2x\text{ = 2} \\ \text{Divide both sides by 2} \\ \frac{2x}{2}\text{ = }\frac{2}{2} \\ x\text{ = 1} \end{gathered}

Therefore, x = 1

5 0
1 year ago
Read 2 more answers
What is the derivative of 1/square root 4x.
Bumek [7]

Answer:

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

Exponential Properties

  • Exponential Property [Rewrite]:                                                                   \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Property [Root Rewrite]:                                                           \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)  

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg]

<u>Step 2: Differentiate</u>

  1. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'
  3. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'
  4. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'
  5. Derivative Rule [Basic Power Rule]:                                                             \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

5 0
3 years ago
What is 1/3 x 12 help me quick
MArishka [77]

Answer:

12/3 = 4

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
20 POINTS WILL MARK BRAINLIEST!!
Nostrana [21]

Answer:

3.67

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Simplify. <br><img src="https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B8m%7D%20%7B%7D%5E%7B3%7D%20" id="TexFormula1" title=" \sqrt[
    11·1 answer
  • Can someone plzzz help me I have midterms tomorrow
    7·1 answer
  • How do i solve 2x-y=9
    5·1 answer
  • [x-(3-5i)][x-(3+5i)]
    13·1 answer
  • I’ve got this and one more!!!
    7·2 answers
  • What ratio is equivalent to 3/6
    9·2 answers
  • Evaluate the following expression.<br> 2-2<br> a0
    5·2 answers
  • What is the hundredths place?
    12·1 answer
  • What is the answer? iiii...........................
    5·1 answer
  • Make sure you show all work for full credit.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!