The cost of one package of white chocolate chip cookie is $9 while the cost of one package of oatmeal cookie dough is $14.
<h3>What is an
equation?</h3>
An equation is an expression used to show the relationship between two or more numbers and variables.
Let x represent the cost of white chocolate chip and y represent the cost of oatmeal dough, hence:
12x + 6y = 192 (1)
Also:
6x + 12y = 222 (2)
From both equations:
x = 9, y = 14
The cost of one package of white chocolate chip cookie is $9 while the cost of one package of oatmeal cookie dough is $14.
Find out more on equation at: brainly.com/question/2972832
Answer:x=0
Step-by-step explanation:
subtract 3 from both sides
3=3=x+3-5x-3
simplify
0=x-5x
switch sides
x-5x
add similar elements ; x-5x=-4x
-4x=0
divided both side by -4
-4x/-4 . = . 0/-4
=0
C = what ever the algebraic pharse is standing for c can equal to what ever number there is
There is a common denominator of 12 among those fractions.
Answer:
x = -1
x = 5
Step-by-step explanation:
Use pythagorean theorem: a² + b² = c²
x² + (2x + 2)² = (2x + 3)²
Since these are quantities, you'll have to make them into quadratic equations.
(2x + 2)(2x + 2) = 4x² + 4x + 4x + 4
(2x + 3)(2x + 3) = 4x² + 6x + 6x + 9
x² + 4x² + 4x + 4x + 4 = 4x² + 6x + 6x + 9
Combine like terms
5x² + 8x + 4 = 4x² + 12x + 9
Move one side to set the equation equal to 0
x² - 4x - 5 = 0
Solve
x² - 5x + x - 5 = 0
x(x - 5) + 1(x - 5) = 0
(x + 1)(x - 5) = 0
x = -1, 5
<em>We</em><em> </em><em>can</em><em> </em><em>check</em><em> </em><em>that</em><em> </em><em>these</em><em> </em><em>are</em><em> </em><em>correct</em><em> </em><em>by</em><em> </em><em>plugging</em><em> </em><em>them</em><em> </em><em>in</em><em> </em><em>for</em><em> </em><em>x</em><em> </em><em>and</em><em> </em><em>seeing</em><em> </em><em>if</em><em> </em><em>they</em><em> </em><em>are</em><em> </em><em>equal</em>
<em>For</em><em> </em><em>example</em>
<em>(</em><em>-1</em><em>)</em><em>²</em><em> </em><em>+</em><em> </em><em>(</em><em>2</em><em>(</em><em>-1</em><em>)</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em>²</em><em> </em><em>=</em><em> </em><em>(</em><em>2</em><em>(</em><em>-1</em><em>)</em><em> </em><em>+</em><em> </em><em>3</em><em>)</em><em>²</em>
<em>1</em><em> </em><em>=</em><em> </em><em>1</em>