Answer: 390, right
explanation: The net force is just the sum of all of these forces acting on an object. ... This equation is the sum of n forces acting on an object. The magnitude of the net force acting on an object is equal to the mass of the object multiplied by the acceleration of the object, as shown in this formula.
Answer:
Ф_cube /Ф_sphere = 3 /π
Explanation:
The electrical flow is
Ф = E A
where E is the electric field and A is the surface area
Let's shut down the electric field with Gauss's law
Фi = ∫ E .dA =
/ ε₀
the Gaussian surface is a sphere so its area is
A = 4 π r²
the charge inside is
q_{int} = Q
we substitute
E 4π r² = Q /ε₀
E = 1 / 4πε₀ Q / r²
To calculate the flow on the two surfaces
* Sphere
Ф = E A
Ф = 1 / 4πε₀ Q / r² (4π r²)
Ф_sphere = Q /ε₀
* Cube
Let's find the side value of the cube inscribed inside the sphere.
In this case the radius of the sphere is half the diagonal of the cube
r = d / 2
We look for the diagonal with the Pythagorean theorem
d² = L² + L² = 2 L²
d = √2 L
we substitute
r = √2 / 2 L
r = L / √2
L = √2 r
now we can calculate the area of the cube that has 6 faces
A = 6 L²
A = 6 (√2 r)²
A = 12 r²
the flow is
Ф = E A
Ф = 1 / 4πε₀ Q/r² (12r²)
Ф_cubo = 3 /πε₀ Q
the relationship of these two flows is
Ф_cube /Ф_sphere = 3 /π
Answer:
We conclude that the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
Explanation:
Given
To determine
Kinetic Energy (K.E) = ?
We know that a body can possess energy due to its movement — Kinetic Energy.
Kinetic Energy (K.E) can be determined using the formula

where
- K.E is the Kinetic Energy (J)
now substituting m = 1.75, and v = 54 in the formula



J
Therefore, the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
The correct answer is: They possess high concentrations of free electrons
The main characteristic of good conductors such as metals is the presence of movable electrically charged particles, or electrons. So, when an electric current is applied to a metal, the electrons will move and allow electricity to pass through them. Materials opposite of metals, with low electron mobility are not good conductors, instead they are called insulators.