1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddik [55]
3 years ago
15

Any help would be appreciated. Confused.

Chemistry
1 answer:
masya89 [10]3 years ago
5 0

Answer:

q(problem 1) = 25,050 joules;  q(problem 2) = 4.52 x 10⁶ joules

Explanation:

To understand these type problems one needs to go through a simple set of calculations relating to the 'HEATING CURVE OF WATER'. That is, consider the following problem ...

=> Calculate the total amount of heat needed to convert 10g ice at -10°C to steam at 110°C. Given are the following constants:

Heat of fusion (ΔHₓ) = 80 cal/gram

Heat of vaporization (ΔHv) = 540 cal/gram

specific heat of ice [c(i)] = 0.50 cal/gram·°C

specific heat of water [c(w)] = 1.00 cal/gram·°C

specific heat of steam [c(s)] = 0.48 cal/gram·°C

Now, the problem calculates the heat flow in each of five (5) phase transition regions based on the heating curve of water (see attached graph below this post) ...   Note two types of regions (1) regions of increasing slopes use q = mcΔT and (2) regions of zero slopes use q = m·ΔH.

q(warming ice) =  m·c(i)·ΔT = (10g)(0.50 cal/g°C)(10°C) = 50 cal

q(melting) = m·ΔHₓ = (10g)(80cal/g) 800 cal

q(warming water) = m·c(w)·ΔT = (10g)(1.00 cal/g°C)(100°C) = 1000 cal

q(evaporation of water) =  m·ΔHv = (10g)(540cal/g) = 5400 cal

q(heating steam) = m·c(s)·ΔT = (10g)(0.48 cal/g°C)(10°C) = 48 cal

Q(total) = ∑q = (50 + 800 + 1000 + 5400 + 48) = 7298 cals. => to convert to joules, multiply by 4.184 j/cal => q = 7298 cals x 4.184 j/cal = 30,534 joules = 30.5 Kj.

Now, for the problems in your post ... they represent fragments of the above problem. All you need to do is decide if the problem contains a temperature change (use q = m·c·ΔT) or does NOT contain a temperature change (use q = m·ΔH).    

Problem 1: Given Heat of Fusion of Water = 334 j/g, determine heat needed to melt 75g ice.

Since this is a phase transition (melting), NO temperature change occurs; use q = m·ΔHₓ = (75g)(334 j/g) = 25,050 joules.

Problem 2: Given Heat of Vaporization = 2260 j/g; determine the amount of heat needed to boil to vapor 2 Liters water ( = 2000 grams water ).

Since this is a phase transition (boiling = evaporation), NO temperature change occurs; use q = m·ΔHf = (2000g)(2260 j/g) = 4,520,000 joules = 4.52 x 10⁶ joules.

Problems containing a temperature change:

NOTE: A specific temperature change will be evident in the context of problems containing temperature change => use q = m·c·ΔT. Such is associated with the increasing slope regions of the heating curve.  Good luck on your efforts. Doc :-)

You might be interested in
Which is an acceptable Lewis structure for a diatomic nitrogen molecule?
madam [21]
Https://quizlet.com/18404690/chemistry-final-flash-cards/ 

here  is a Quizlet I have for that

7 0
3 years ago
2 points
erica [24]

9 grams of hydrogen gas (H2) will SC  Johnson need to react in order to make 1 bottle of Windex.

Explanation:

Balance equation for the formation of ammonia from H2 gas.

N2 + 3H2 ⇒ 2 NH_{3}

Given

mass of ammonia in 1 bottle of windex = 51 gram

atomic mass of ammonia 17.01 gram/mole

number of moles = \frac{mass}{atomic mass of 1 mole}

number of moles = \frac{51}{17.01}

                               = 3 moles of ammonia is formed.

in 1 bottle of windex there are 3 moles of ammonia 0r 51 grams of ammonia.

From the equation it can be found that:

3 moles of hydrogen reacted to form 2 moles of ammonia

so, x moles of hydrogen will react to form 3 moles of ammonia.

\frac{2}{3} = \frac{3}{x}

x = 4.5 moles of hydrogen will be required.

to convert moles into gram formula used:

mass = atomic mass x number of moles  (atomic mass of H2 is 2grams/mole)

        = 2 x 4.5

        = 9 grams of hydrogen.

7 0
2 years ago
A mixture of methane and carbon dioxide gases contains methane at a partial pressure of 431 mm Hg and carbon dioxide at a
KatRina [158]

Answer:

XCH₄ = 0.461

XCO₂ = 0.539

Explanation:

Step 1: Given data

  • Partial pressure of methane (pCH₄): 431 mmHg
  • Partial pressure of carbon dioxide (pCO₂): 504 mmHg

Step 2: Calculate the total pressure in the container

We will sum both partial pressures.

P = pCH₄ + pCO₂

P = 431 mmHg + 504 mmHg = 935 mmHg

Step 3: Calculate the mole fraction of each gas

We will use the following expression.

Xi = pi / P

XCH₄ = pCH₄/P = 431 mmHg/935 mmHg = 0.461

XCO₂ = pCO₂/P = 504 mmHg/935 mmHg = 0.539

3 0
2 years ago
Which noble gas is closer to magnesium
cricket20 [7]

I believe Neon is closest to Magnesium on the Periodic Table of elements.

Sorry if I'm wrong, hope I could help though! :)

3 0
2 years ago
0.0136 g + 2.70 × 10-4 g - 4.21 × 10-3 g = ?
melisa1 [442]

Answer choice is , 2

3 0
2 years ago
Other questions:
  • The elements least likely to form a bond are found in group
    5·2 answers
  • Overfatness in babies is discouraged because it may:
    5·2 answers
  • Which of the following is a description of an exothermic reaction?
    10·1 answer
  • Hydrogen peroxide decomposes spontaneously to yield water and oxygen gas according to the following reaction equation. 2H202(aq)
    5·1 answer
  • What is thermodynamics ??? <br>don't explain .-. !!!​
    9·1 answer
  • a 182.4g sample of germanium-66 is left undisturbed for 22.5 hours. At the end of that period, only 5.70g remain. What is the ha
    5·1 answer
  • Based on the crystal- field strength cl-
    11·1 answer
  • A toy car is released at the top of an inclined plane. How does the car's energy change as it rolls down the inclined plane? tel
    14·1 answer
  • Explain the geological process that results in the formation of minerals!!
    7·2 answers
  • Which energy changes would take place when a water is heated using a Bunsen burner?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!