Heat.
90% of all energy is released as heat in ecosystems.
Ans.
A nerve is defined as a bundle of axons. Axons are slender, long projections protruded from neurons in PNS (peripheral nervous system). The nerves provide a pathway for the transmission of electrochemical nerve impulses from axons to the other peripheral body organs.
Thus, the correct option to be fill in the blank is 'bundle of axons.'
Answer:
The frequency of A1 be on Big Pine Key after a single generation of migration from No Name Keyp is 0.2276
Explanation:
Whenever it occurs migration between two populations, there is genetic flux going on. Genetic flux might be considered as an evolutive strength only if migration > 0 and if the allelic frequency in one generation is different from the allelic frequency in the next generation.
Genetic flux acts homogenizing the allelic frequencies between the two populations, and it might introduce variability.
By knowing the allelic frequencies in both populations at a certain time and the migration rate, we can calculate the allelic frequencies of populations in the next generation. This is:
pA₂=pA₁(1-m)+pB₁ m
pB₂=pB₁(1-m)+pA₁ m
Being
- A one population and B the other population
- pA₁ and pB₁ the frequencies of the p allele before migration,
- pA₂and pB₂ the frequencies of the p allele after migration,
- m the migration rate
In the exposed example, we know that:
- No Name Key population allelic frequency: A1 = 0.43 and A2 = 0.57
- Big Pine Key population allelic frequency: A1 =0.21 and A2 = 0.79
Let´s say that p represents A1 allele, and q represents A2 allele.
The frequency of A1 allele (p) be on Big Pine Key (Population B) after a single generation of migration from No Name Key (Population A)
pB₂=pB₁(1-m)+pA₁ m
pB₂=0.21 x (1 - 0.08) + 0.43 x 0.08
pB₂= 0.2276
The allelic frequency in a population after one generation is the allelic frequency of individuals of that population that did not migrate (21 x (1 - 0.08) plus the allelic frequency of the new individuals that came from the other population (0.43 x 0.08).
You can corroborate your result by calculating the q allele frequency in the next generation and summing both of them up. The result should be one.
qB₂= qB₁(1-m)+qA₁ m
qB₂= 0.79 x (1 - 0.08) + 0.57 x 0.08
qB₂= 0.7724
p + q = 1
0.2276 + 0.7724 = 1
The two sides of the brain contains four lobes each. These lobes are: (1) frontal lobe, (2) parietal lobe, (3) occipital lobe, and (4) temporal lobe. Each of these lobes have their own specific functions. Frontal lobe controls the voluntary movements or activity. Parietal lobe is responsible for information about taste, temperature, touch, and movement. Occipital lobe is responsible for the vision and lastly the temporal lobe is responsible for memories, taste, sight, and touch.
The answer to this item is the temporal lobe.