Freezing point depression depends of the number of particles of the solute in the solution.
1)Pure water have highest freezing point. All other solutions with given solutes will have lower temperatures.
2) The more particles of the solute in the solution the lower freezing point is going to be.
<span>b. 1.0 m NaCl ( dissociates and give 2 mol ions (1 mol Na⁺ and 1 mol Cl⁻))
c. 1.0 m K3PO4 (</span>dissociates and give 4 mol ions (3 mol K⁺ and 1 mol PO4³⁻)<span>
d. 1.0 m CaCl2 (</span>dissociates and give 3 mol ions (1 mol Ca²⁺ and 2 mol Cl⁻))<span>
e. 1.0 m glucose (c6h12o6) (glucose does not dissociate, and solution have
1 mole of particles of the solute(glucose))
The largest number of particles has </span>1.0 m K3PO4 solution, and it is has lowest freezing point . Answer is C.
Is it Technology? What have you already tried?
<u>Given:</u>
Concentration of HNO3 = 7.50 M
% dissociation of HNO3 = 33%
<u>To determine:</u>
The Ka of HNO3
<u>Explanation:</u>
Based on the given data
[H+] = [NO3-] = 33%[HNO3] = 0.33*7.50 = 2.48 M
The dissociation equilibrium is-
HNO3 ↔ H+ + NO3-
I 7.50 0 0
C -2.48 +2.48 +2.48
E 5.02 2.48 2.48
Ka = [H+][NO3-]/HNO3 = (2.48)²/5.02 = 1.23
Ans: Ka for HNO3 = 1.23
Answer:
C. Lithium is most easily oxidized of the metals listed on the activity series and therefore it will most easily give electrons to metal cations
Explanation:
"Lithium" is a type of alkali metal that has a "single valence electron." Since it is a reactive element, it easily gives up an electron when it is combined with other elements. Such giving up of electron is meant to create compounds or bonds.
Among the common metals listed, "lithium" is the most easily oxidized. This means that it donates its electrons immediately. Such combination makes it exist as a<em> "cation"</em> or <em>"positively-charged."</em>
So, this explains the answer.
Answer:
babies have the most sensitive taste buds