Answer:
Explanation:
Mass of compound A = 25g
Mass of compound B = 40g
Mass of final mixture = 55g
What happens to the missing mass?
According to the law of conservation of mass, in chemical reaction, matter is transformed from one form to another but cannot be created nor destroyed.
We expect the final mass of the mixture and that of the reacting compounds to be the same but the opposite is the case.
There is a mass loss which typifies most chemical reaction.
The reason for this is that some of the masses must have been lost by the production of gaseous species which are unaccounted for.
The missing mass:
Total mass expected = mass of A + mass of B = 25 + 40 = 65g
Missing mass = expected mass - mass of final mixture = 65 - 55 = 10g
Answer: The partial pressure of the dry oxygen is 742 torr
Explanation:
Dalton's Law of Partial Pressure states that the total pressure exerted by a mixture of gases is the sum of partial pressure of each individual gas present. Thus 
Given; Total pressure = 762 torr
partial pressure of water = 19.8 torr
partial pressure of dry oxygen = ? torr
Total pressure = partial pressure of water + partial pressure of dry oxygen
762 torr = 19.8 torr = partial pressure of dry oxygen
partial pressure of dry oxygen = 742 torr
The partial pressure of the dry oxygen is 742 torr
Explanation:
pls, refer to the above picture, i hope you will find it helpful.
Answer:
The correct option is;
a. The particles will gain a large amount of kinetic energy
Explanation:
As the water temperature reaches 100°C, which is the boiling point for water at atmospheric pressure, the continued heating is then used to break up the strong inter molecular forces between molecules of the water such that the individual molecules are free to move about and due to the high temperature, have gained considerable amount of kinetic energy for the to rise to appreciable height and to also spread.
The heat which converts water into steam is called latent heat as during the boiling phase, the temperature of the water remains constant.