Answer:
gof(x) = 3
Step-by-step explanation:
Given that,
f(x) = x+2 and g(x) = x+1
We need to find gof(x).
gof(x) means g[f(x)].
g[f(x)] = g(x +2)
= x+2+1
= x+3
Hence, the value of gof(x) is 3.
Answer:
6/21
Step-by-step explanation:
2/3 x 2/3 x 2/3
6/21
Answer:
![x^{4} -y^{4} +6x^{2}y+9y^{2}](https://tex.z-dn.net/?f=x%5E%7B4%7D%20-y%5E%7B4%7D%20%2B6x%5E%7B2%7Dy%2B9y%5E%7B2%7D)
Step-by-step explanation:
This is just a big multiplication, but it gets more simple when you break it into steps.
First consider
. This multiplies out to ![x^{4} +3x^{2}y-x^{2}y^{2}](https://tex.z-dn.net/?f=x%5E%7B4%7D%20%2B3x%5E%7B2%7Dy-x%5E%7B2%7Dy%5E%7B2%7D)
Next,
. This is ![3x^{2}y+9y^{2}-3y^{3}](https://tex.z-dn.net/?f=3x%5E%7B2%7Dy%2B9y%5E%7B2%7D-3y%5E%7B3%7D)
Finally,
. This is ![x^{2}y^{2} +3x^{3}-y^{4}](https://tex.z-dn.net/?f=x%5E%7B2%7Dy%5E%7B2%7D%20%2B3x%5E%7B3%7D-y%5E%7B4%7D)
Sum these three expressions together and you get ![x^{4} -y^{4} +6x^{2}y+9y^{2}](https://tex.z-dn.net/?f=x%5E%7B4%7D%20-y%5E%7B4%7D%20%2B6x%5E%7B2%7Dy%2B9y%5E%7B2%7D)
Answer:
The answer to this question can be defined as follows:
The Lower sum ="0.659"
The Upper sum ="0.859"
Step-by-step explanation:
In the given equation there is some mistype error, so the correct equation and its solution can be defined as follows:
Equation:
![y= \sqrt{1-x^2}](https://tex.z-dn.net/?f=y%3D%20%5Csqrt%7B1-x%5E2%7D)
calculating the Δx:
![=\frac{(1 - 0)}{5}\\\\=\frac{1}{5}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B%281%20-%200%29%7D%7B5%7D%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B5%7D)
calculating the Upper sum value:
![=\bigtriangleup x \times (f(0) + f(\frac{1}{5}) + f(\frac{2}{5}) + f(\frac{3}{5}) + f(\frac{4}{5})) \\\\= \frac{1}{5} \times (1 + \sqrt{(\frac{24}{25})} + \sqrt{\frac{21}{25}} + \frac{4}{5} + \frac{3}{5})\\\\= 0.859](https://tex.z-dn.net/?f=%3D%5Cbigtriangleup%20x%20%20%5Ctimes%20%28f%280%29%20%2B%20f%28%5Cfrac%7B1%7D%7B5%7D%29%20%2B%20f%28%5Cfrac%7B2%7D%7B5%7D%29%20%2B%20f%28%5Cfrac%7B3%7D%7B5%7D%29%20%2B%20f%28%5Cfrac%7B4%7D%7B5%7D%29%29%20%5C%5C%5C%5C%3D%20%5Cfrac%7B1%7D%7B5%7D%20%5Ctimes%20%20%281%20%2B%20%5Csqrt%7B%28%5Cfrac%7B24%7D%7B25%7D%29%7D%20%2B%20%5Csqrt%7B%5Cfrac%7B21%7D%7B25%7D%7D%20%2B%20%5Cfrac%7B4%7D%7B5%7D%20%2B%20%5Cfrac%7B3%7D%7B5%7D%29%5C%5C%5C%5C%3D%200.859)
calculating the Lower sum value: