An endothermic reaction is when the energy is absorbed, while an exothermic reaction releases energy.
Answer:
23.8
Explanation:
Formula
weight % = weight of solute/ weight of solution x 100
weight of solution = weight of salt + weight of water
weight of solution = 1.62 lb + 5.20 lb = 6.82 lb
weight % = 1.62 / 6,82 x 100
weight % = 0.238 x 100
weight % = 23.8
[A] 0
When opposing forces act on an object, this means that the object isn't moving at all. This is also known as a "balanced force." If the forces of the same and you add them together the answer is 0.
Hope This Helped! Good Luck!
Answer:
-476.95 Kj
Explanation:
N2H4(l) + N2O4(g) = 2N2O(g) + 2H20(g)
∆Hrxn = n∆Hf(products) - m∆Hf(reactants)
Where n and m = stoichiometric coefficients of the products and reactants respectively from the balanced chemical equation, ∆Hf = standard enthalpy of formation, ∆Hrxn= standard enthalpy of reaction.
Using the following standard enthalpies of formation ( you did not provide any ):
N2H4(l) = +50.63Kj/mol; N2O4(g) = +9.08Kj/mol; N2O(g) =+33.18Kj/mol; H2O(g) = -241.8Kj/mol
∆Hrxn = [ (2(∆Hf(N2O)) + (2(∆Hf(H2O))] – [(1(∆Hf(N2H4)) + (1(∆Hf(N2O4))]
∆Hrxn = [ 2(+33.18) + 2(-241.8)] – [ (+50.63) + (+9.08)]
∆Hrxn = [ (+66.36)+(-483.6)] – [ +50.63+9.08]
∆Hrxn = [ +66.36-483.6] – [+59.71]
∆Hrxn = -417.24-59.71
∆Hrxn = -476.95 Kj
NOTE: Remember to use the standard enthalpies of formation given to you by your instructor if they differ from the values used herein, and follow the same procedure.
The answer is C. Strong nuclear force. Subatomic particles in the core of an atom (protons and neutrons) are held together by this type of force. The force is known to be one of the 4 fundamental forces of our universe.