x = total amount split between Adam and Tom.
since we know the total amount split between both in a 18 : 17 ratio is "x", let's divide "x" by (18 + 17) and distribute accordingly to get the amount of each.
![\stackrel{Adam~received}{18\cdot \cfrac{x}{18+17}}\qquad \qquad \stackrel{Tom~received}{17\cdot \cfrac{x}{18+17}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{since we know that Adam got "5" more}}{ \stackrel{Adam}{18\cdot \cfrac{x}{18+17}}~~ = ~~\stackrel{Tom}{17\cdot \cfrac{x}{18+17}~~ + ~~5} }\qquad \implies \qquad \cfrac{18x}{35}~~ + ~~\cfrac{17x}{35}+5](https://tex.z-dn.net/?f=%5Cstackrel%7BAdam~received%7D%7B18%5Ccdot%20%5Ccfrac%7Bx%7D%7B18%2B17%7D%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7BTom~received%7D%7B17%5Ccdot%20%5Ccfrac%7Bx%7D%7B18%2B17%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bsince%20we%20know%20that%20Adam%20got%20%225%22%20more%7D%7D%7B%20%5Cstackrel%7BAdam%7D%7B18%5Ccdot%20%5Ccfrac%7Bx%7D%7B18%2B17%7D%7D~~%20%3D%20~~%5Cstackrel%7BTom%7D%7B17%5Ccdot%20%5Ccfrac%7Bx%7D%7B18%2B17%7D~~%20%2B%20~~5%7D%20%7D%5Cqquad%20%5Cimplies%20%5Cqquad%20%5Ccfrac%7B18x%7D%7B35%7D~~%20%2B%20~~%5Ccfrac%7B17x%7D%7B35%7D%2B5)
![\stackrel{\textit{multiplying both sides by }\stackrel{LCD}{35}}{35\left( \cfrac{18x}{35} \right)~~ = ~~35\left( \cfrac{17x}{35}+5 \right)}\implies 18x~~ = ~~17x+175\implies \boxed{x =175} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{Tom~received}{17\cdot \cfrac{x}{18+17}}\implies \cfrac{17(175)}{35}\implies \blacktriangleright 85 \blacktriangleleft](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B35%7D%7D%7B35%5Cleft%28%20%5Ccfrac%7B18x%7D%7B35%7D%20%5Cright%29~~%20%3D%20~~35%5Cleft%28%20%5Ccfrac%7B17x%7D%7B35%7D%2B5%20%5Cright%29%7D%5Cimplies%2018x~~%20%3D%20~~17x%2B175%5Cimplies%20%5Cboxed%7Bx%20%3D175%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7BTom~received%7D%7B17%5Ccdot%20%5Ccfrac%7Bx%7D%7B18%2B17%7D%7D%5Cimplies%20%5Ccfrac%7B17%28175%29%7D%7B35%7D%5Cimplies%20%5Cblacktriangleright%2085%20%5Cblacktriangleleft)
Answer:
Therefore the required polynomial is
M(x)=0.83(x³+4x²+16x+64)
Step-by-step explanation:
Given that M is a polynomial of degree 3.
So, it has three zeros.
Let the polynomial be
M(x) =a(x-p)(x-q)(x-r)
The two zeros of the polynomial are -4 and 4i.
Since 4i is a complex number. Then the conjugate of 4i is also a zero of the polynomial i.e -4i.
Then,
M(x)= a{x-(-4)}(x-4i){x-(-4i)}
=a(x+4)(x-4i)(x+4i)
=a(x+4){x²-(4i)²} [ applying the formula (a+b)(a-b)=a²-b²]
=a(x+4)(x²-16i²)
=a(x+4)(x²+16) [∵i² = -1]
=a(x³+4x²+16x+64)
Again given that M(0)= 53.12 . Putting x=0 in the polynomial
53.12 =a(0+4.0+16.0+64)

=0.83
Therefore the required polynomial is
M(x)=0.83(x³+4x²+16x+64)
Answer: 33
Step-by-step explanation:
(f of g)(2) = f(g(2))
g(2) = -2(2) = -4
f(-4) = (-4)^2 - 3(-4) + 5 =
16 - - 12 + 5 =
16 + 17 =
33
About 2 minutes and 33 seconds?
[ I apologize if this is wrong ]