Nuclear fission is seperating an atom so product is b.
Energy is released during nuclear fussion. Mass is converted into energy because E=mc^2, this is the energy that is released
Answer:
9.21954 m/s
54 m/s²
Angle is zero
Explanation:
r = Radius of arm = 1.5 m
= Angular velocity = 6 rad/s
The horizontal component of speed is given by

The vertical component of speed is given by

The resultant of the two components will give us the velocity of hammer with respect to the ground

The velocity of hammer relative to the ground is 9.21954 m/s
Acceleration in the vertical component is zero
Net acceleration is given by

Net acceleration is 54 m/s²
As the acceleration is towards the center the angle is zero.
Answer:
x = (mg-f)/k
Explanation:
there are three forces acting on cylinder in a tube, (1) force due to spring = -kx (2) force due to friction = f (3) force due to gravity.
we want to calculate an instant when all three forces acting on mass cancel and there is 0 net force and cylinder momentiraly comes to stop.
let's write it in mathematics.
kx+f-mg=0 (kx is positive because it is upwards and that is how we have setup our coordinate axis in this problem).
solving for x gives.
x = (mg-f)/k.
Answer:
A correlation coefficient represents the following:
1- The direction of the relationship
2- The strength of the relationship
Assuming all the substances are already at the temperature that is their melting point, we only need to worry about the heat required to change state, not the heat required to change temperature.
No calculations necessary for this question - just look at the latent heat of fusion. The higher this value, the more heat required per unit mass of the substance to melt it. Of the four answer options, aluminum has the highest value and therefore will take the most heat to melt the same mass.