1) 1025km per 13.5hr = 1025km/13.5hr = 75.9 km/hr
2) 400km per 30min = 400km/30min = 13.3 km/min
13.3km/min X (60min per hr) = 13.3km/min(60min/hr) = 800km/hr
3) 45km/hr in 40min = 45km/hr X 40min X (1hr/60min) = 30km.
<span>
4) (30m/s - 10m/s) per 10s = 20m/s/10s = 2ms/s = 2m/s/s = 2m/s^2 </span>
Below are the answers:
(a) Ep = mass x gravitational acceleration x height
<span>= 2kg x 9.8ms-2 x 3m </span>
<span>= 58.8J </span>
<span>(b) F = mg </span>
<span>= 2kg x 9.8ms-2 </span>
<span>= 19.6N </span>
<span>W = Fd </span>
<span>= 19.6N x 3m </span>
<span>= 58.8J
</span>
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Answer:
I need help
Explanation:
Albert tries to move a 200 N car and it moves 0 m. A tow truck tries to move the 200 N car and it moves 2 m off the ground onto the truck bed. Who put more work into moving the car? Explain your response using the space below. Be sure to show your calculations. *
Answer:
Resistance increases with increase in temperature which depends on power supplied which also depends on voltage.
Thermal expansion will make resistance larger.
Explanation:
Light bulb is a good example of a filament lamp. If we plot the graph of voltage against current we will notice that resistance is constant at constant temperature.
The filament heats up when an electric current passes through it, and produces light as a result.
The resistance of a lamp increases as the temperature of its filament increases. The current flowing through a filament lamp is not directly proportional to the voltage across it.
tensile stress begins to appear in resistor as the temperature rises. Thus, the resistance value increases as the temperature rises. Resistance value can only decrease as the temperature rises in case of thin film resistor with aluminium substrate.
In case of a filament bulb, the resistance will increase as increase in length of the wire. The thermal expansion in this regard is linear expansivity in which resistance is proportional to length of the wire.
Resistance therefore get larger.
Now I can actually edit my answer directly: I'm fairly sure I've got this wrong, and my mind has gone blank for how to do it, if someone could delete this that would be great and I'll think about it and see if I can figure it out!