Answer:
The force of friction.
Explanation:
Gravity keeps the car on the ground.
Motion Allows the car to move.
The force of speed doesnt make sense.
Friction would cause the car to stop moving.
Answer:
a) Yes
b) No
Explanation:
In the first case, part a, yes we can say for certainty that cylinderical symmetry holds. Why so? You may ask. This is because from the question, we are told that the length of the rod is 300 cm. And this said length is longer than the distance to the point from the center of the rod, which is 5 cm.
In the second half of the question, I beg to disagree that cylindrical symmetry holds. Again, you may ask why, this is because the length of the rod in this case, is having the same order of magnitude as the distance to the center of the rod. Thus, it is not symmetrical.
Answer:
The boundaries cause the waves to change direction an effect called <u>refraction.</u>
Explanation:
When a wave crosses a boundary between different materials, the speed of the wave and its wavelength changes.When passing from air to water the two properties (speed and wavelength) decreases, and the wave is observed to change direction as it crosses the boundary between the two material.The bending of the wave is called refraction.
Answer:
a= 23.65 ft/s²
Explanation:
given
r= 14.34m
ω=3.65rad/s
Ф=Ф₀ + ωt
t = Ф - Ф₀/ω
= (98-0)×/3.65
98°= 1.71042 rad
1.7104/3.65
t= 0.47 s
r₁(not given)
assuming r₁ =20 in
r₁ = r₀ + ut(uniform motion)
u = r₁ - r₀/t
r₀ = 14.34 in= 1.195 ft
r₁ = 20 in = 1.67 ft
= (1.667 - 1.195)/0.47
0.472/0.47
u= 1.00ft/s
acceleration at collar p
a=rω²
= 1.67 × 3.65²
a = 22.25ft/s²
acceleration of collar p related to the rod = 0
coriolis acceleration = 2ωu
= 2× 3.65×1 = 7.3 ft/s²
acceleration of collar p
= 22.5j + 0 + 7.3i
√(22.5² + 7.3²)
the magnitude of the acceleration of the collar P just as it reaches B in ft/s²
a= 23.65 ft/s²