1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anettt [7]
3 years ago
10

How many antinodes are in the standing wave pattern shown? 1. 2 2. 4 3. 3 4. 7 5. 5 6. 6?

Mathematics
1 answer:
Sphinxa [80]3 years ago
4 0

There's 6 antinodes here.

You might be interested in
If <img src="https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20x%20%3D%20log_%7Ba%7D%28bc%29" id="TexFormula1" title="\rm \: x = log_{a}(
timama [110]

Use the change-of-basis identity,

\log_x(y) = \dfrac{\ln(y)}{\ln(x)}

to write

xyz = \log_a(bc) \log_b(ac) \log_c(ab) = \dfrac{\ln(bc) \ln(ac) \ln(ab)}{\ln(a) \ln(b) \ln(c)}

Use the product-to-sum identity,

\log_x(yz) = \log_x(y) + \log_x(z)

to write

xyz = \dfrac{(\ln(b) + \ln(c)) (\ln(a) + \ln(c)) (\ln(a) + \ln(b))}{\ln(a) \ln(b) \ln(c)}

Redistribute the factors on the left side as

xyz = \dfrac{\ln(b) + \ln(c)}{\ln(b)} \times \dfrac{\ln(a) + \ln(c)}{\ln(c)} \times \dfrac{\ln(a) + \ln(b)}{\ln(a)}

and simplify to

xyz = \left(1 + \dfrac{\ln(c)}{\ln(b)}\right) \left(1 + \dfrac{\ln(a)}{\ln(c)}\right) \left(1 + \dfrac{\ln(b)}{\ln(a)}\right)

Now expand the right side:

xyz = 1 + \dfrac{\ln(c)}{\ln(b)} + \dfrac{\ln(a)}{\ln(c)} + \dfrac{\ln(b)}{\ln(a)} \\\\ ~~~~~~~~~~~~+ \dfrac{\ln(c)\ln(a)}{\ln(b)\ln(c)} + \dfrac{\ln(c)\ln(b)}{\ln(b)\ln(a)} + \dfrac{\ln(a)\ln(b)}{\ln(c)\ln(a)} \\\\ ~~~~~~~~~~~~ + \dfrac{\ln(c)\ln(a)\ln(b)}{\ln(b)\ln(c)\ln(a)}

Simplify and rewrite using the logarithm properties mentioned earlier.

xyz = 1 + \dfrac{\ln(c)}{\ln(b)} + \dfrac{\ln(a)}{\ln(c)} + \dfrac{\ln(b)}{\ln(a)} + \dfrac{\ln(a)}{\ln(b)} + \dfrac{\ln(c)}{\ln(a)} + \dfrac{\ln(b)}{\ln(c)} + 1

xyz = 2 + \dfrac{\ln(c)+\ln(a)}{\ln(b)} + \dfrac{\ln(a)+\ln(b)}{\ln(c)} + \dfrac{\ln(b)+\ln(c)}{\ln(a)}

xyz = 2 + \dfrac{\ln(ac)}{\ln(b)} + \dfrac{\ln(ab)}{\ln(c)} + \dfrac{\ln(bc)}{\ln(a)}

xyz = 2 + \log_b(ac) + \log_c(ab) + \log_a(bc)

\implies \boxed{xyz = x + y + z + 2}

(C)

6 0
2 years ago
Giving 20 points and brainiest!
sladkih [1.3K]

Answer:

1/2,3/6,5/10,8/16

Step-by-step explanation:

they all equal 1/2

Im not sure if thats what it was asking but yea

6 0
3 years ago
Read 2 more answers
Solve a triangle when A=15° B=113° and b=7?
JulsSmile [24]

Let us draw a triangle ABC with A=15° ,B=113° and b=7.

Please see the attached image.

We know that the sum of interior angles of a triangle is 180 degrees. Thus, we have

A+B+C=180\\&#10;\\&#10;15+113+C= 180\\&#10;\\&#10;C=62^{\circ}

Apply Sine rule in the triangle ABC, we get

\frac{a}{\sin 15}= \frac{7}{\sin 113}\\&#10;\\&#10;a=\frac{7 \sin 15}{\sin 113}\\&#10;\\&#10;a=1.97\\&#10;\\&#10;\text{Again apply sine rule, we get}\\&#10;\\&#10;\frac{c}{\sin 62}= \frac{7}{\sin 113}\\&#10;\\&#10;c=\frac{7 \sin 62}{\sin 113}\\&#10;\\&#10;c=6.71

Therefore, we have

a=1.97\\&#10;c=6.71\\&#10;C=62^{\circ}


4 0
4 years ago
Solve for x <br> 3(x - 2) = 6x - 12
svetoff [14.1K]

Answer:x=2

Step-by-step explanation:

3(x-2)=6x-12

3x-6=6x-12

Collect like terms

6x-3x=12-6

3x=6

Divide both sides by 3

3x/3=6/3

x=2

6 0
3 years ago
Find m∠ABC = 7x - 4 and m∠BDC = 9x - 1 and and m∠ABC = 107°, find x, m∠ABC and m∠BDC.
Artyom0805 [142]

Answer:

m<BDC = 62 degrees

Step-by-step explanation:

Using the expression;

<ABC = <ABD + <DBC

107 = 7x-4 + 9x - 1

107 = 16x-5

16x = 107 + 5

16x = 112

x = 112/16

x = 7

Get m<DBC

m<BDC = 9x - 1

m<BDC = 9(7)-1

m<BDC = 63 - 1

m<BDC = 62 degrees

6 0
3 years ago
Other questions:
  • How to solve the problem and the answer plz.
    5·1 answer
  • You randomly draw a card from two separate standard decks of cards. Are the events independent or dependent? Why?
    5·2 answers
  • PLEASE COMMENT THE CORRECT ANSWER I WILL REWARD BRAINLY
    7·1 answer
  • Help!!! Pls!!!! :) i dont know
    15·1 answer
  • Ax-bx+y=z solve for x​
    8·2 answers
  • Hlp if u know the answer
    14·2 answers
  • What are the solutions to the equation e^1/4x =|4x|
    14·2 answers
  • One lap around the park is 0.65 mile. Hal ran 4.5 laps. How many miles did Hal run?
    9·2 answers
  • Last week, a chocolate shop sold 4 7/8 ounces of white chocolate. It sold 3 times as much milk chocolate as white chocolate. How
    10·2 answers
  • Find the value of the expression<br><br> 9.18 · z<br><br> for z = 2.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!