<span>Here I think you have to find the velocity in x and y components where x is east and y is north
So as air speed indicator shows the negative speed in y component and adding it in
air speed while multiplying with the direction component we will get the velocity as velocity is a vector quantity so direction is also required
v=-28 m/s y + 18 m/s (- x/sqrt(2) - y/sqrt(2))
solving
v= -12.7 m/s x-40.7 m/s y
if magnitude of velocity or speed is required then
speed= sqrt(12.7^2 + 40.7^2)
speed= 42.63 m/s
if angle is asked
angle = arctan (40.7/12.7)
angle = 72.67 degrees south of west</span>
Answer:
82.4 cm
Explanation:
The object and screen are kept fixed ie the distance between them is fixed and by displacing lens between them images are formed on the screen . In the first case let u be the object distance and v be the image distance
then ,
u + v = 184 cm
In the second case of image formation , v becomes u and u becomes v only then image formation in the second case is possible.
The difference between two object distance ie( v - u ) is the distance by which lens is moved so
v - u = 82.4 cm
Answer:
Magnitude of resultant = 131.15
Direction of resultant = 3.97°
Explanation:
||u|| = 70
θ = 40°


||v|| = 85
θ = 335°


Resultant


Magnitude of resultant = 131.15
Direction of resultant = 3.97°
<h3><u>Volume is 0.1848 m³</u></h3><h3 />
Explanation:
<h2>Given:</h2>
m = 49.9 kg
ρ = 270 kg/m³
<h2>Required:</h2>
volume
<h2>Equation:</h2>

where: ρ - density
m - mass
v - volume
<h2>Solution:</h2>
Substitute the value of ρ and m





<h2>Final Answer:</h2><h3><u>Volume is 0.1848 m³</u></h3>
Answer:
vector quantities are resolved into their component form (along the x and y-axis) before adding them. Let us assume that two vectors are
→
a
=
x
1
^
i
+
y
1
^
j
and
→
b
=
x
2
^
i
+
y
2
^
j
, we can find the sum of two vectors as follows.
→
a
+
→
b
=
x
1
^
i
+
y
1
^
j
+
x
2
^
i
+
y
2
^
j
=
(
x
1
+
x
2
)
^
i
+
(
y
1
+
y
2
)
^
j
The direction of the sum of the vectors (with positive x-axis) is,
θ
=
tan
−
1
(
y
1
+
y
2
x
1
+
x
2
)