Answer:
a) The distance of spectator A to the player is 79.2 m
b) The distance of spectator B to the player is 43.9 m
c) The distance between the two spectators is 90.6 m
Explanation:
a) Knowing the time it takes the sound to reach both spectators, we can calculate their position relative to the player, using this equation:
x = v * t
where:
x = position of the spectators
v = speed of sound
t = time
Then, the position for spectator A relative to the player is:
x = 343 m/s * 0.231 s = 79.2 m
b)For spectator B:
x = 343 m/s * 0.128 s
x = 43.9 m
The distance of spectator A and B to the player is 79.2 m and 43.9 m respectively.
c) To calculate the distance between the spectators, please see the attached figure. Notice that the distance between the spectators is the hypotenuse of the triangle formed by the sightline of both. We already know the longitude of the two sides. Then, using Pythagoras theorem:
(Distance AB)² = A² + B²
(Distance AB)² = (79.2 m)² + (43.9 m)²
Distance AB = 90. 6 m
Answer:
11.0 kg m/s
Explanation:
The impulse exerted on the cart is equal to its change in momentum:

where
m = 5.0 kg is the mass of the cart
is its change in speed
Substituting numbers into the equation, we find

The "El-nino current is awarm current that periodically flows southward along the coast of Ecuador and Peru. El-nino start out from the central and east central of the pacific, which include pacific coast of this south America. this ocean event is associated with fluctuation of inter tropical surface pressure pattern and circulation in the ocean.
Answer:
C.when the nucleus decays
Explanation:
In chemical reactions, the outermost electrons of atoms are re-arranged somehow without the involvement of the nuclei of the participating atoms of the elements.
Nuclear reactions causes changes within the atomic nucleus. For every atomic nucleus, a specific neutron/proton ratio ensures stability. When the stability ratio differs an atom becomes unstable and splits into one or more other nuclei with the emission of small particles of matter. This is what radioactivity entails.