Answer:
2.36 x 10^6 J
Explanation:
Tc = 0°C = 273 K
TH = 22.5°C = 295.5 K
Qc = heat used to melt the ice
mass of ice, m = 85.7 Kg
Latent heat of fusion, L = 3.34 x 10^5 J/kg
Let Energy supplied is E which is equal to the work done
Qc = m x L = 85.7 x 3.34 x 10^5 = 286.24 x 10^5 J
Use the Carnot's equation


QH = 309.8 x 10^5 J
W = QH - Qc
W = (309.8 - 286.24) x 10^5
W = 23.56 x 10^5 J
W = 2.36 x 10^6 J
Thus, the energy supplied is 2.36 x 10^6 J.
When light is reflected by a mirror, the angle of incidence is always <span>A. equal to the angle of reflection. We know this by the Law of Reflection.</span>
Complete Question:
The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have studied the change in length of the knee extensor tendon in sprinters and nonathletes. They find (on average) that the sprinters' tendons stretch 43 mm , while nonathletes' stretch only 32 mm . The spring constant for the tendon is the same for both groups,
. What is the difference in maximum stored energy between the sprinters and the nonathlethes?
Answer:

Explanation:
Sprinters' tendons stretch, 
Non athletes' stretch, 
Spring constant for the two groups, k = 31 N/mm = 3100 N/m
Maximum Energy stored in the sprinter, 
Maximum energy stored in the non athletes, 
Difference in maximum stored energy between the sprinters and the non-athlethes:

I think the correct answer is
D) Ted associated being asked a question with embarrassment.
Glad I could help, and good luck!
AnonymousGiantsFan
Bruh ima be honest with you idek