Answer:
20.42 N/m
Explanation:
From hook's law,
F = ke ......................... Equation 1
Where F = Force applied to the spring., k = spring constant, e = extension.
Make k the subject of the equation,
k = F/e ................. Equation 2
Note: The force on the spring is equal to the weight of the mass hung on it.
F = W = mg.
k = mg/e................ Equation 3
Given: m = 250 g = 0.25 kg, e = 37-25 = 12 cm = 0.12 m.
Constant: g = 9.8 m/s²
Substitute into equation 3
k = (0.25×9.8)/0.12
k = 20.42 N/m.
Hence the spring constant = 20.42 N/m
Answer:
3 m/s squared
Explanation:
The formula you use is Vf= Vi + at. You rearrange it to a= Vf - Vi/t. The Vf is 27m/s. The Vi is 0m/s and the t is 9s. Cross out Vi since it’s zero and you’re left with a= 27m/s divided by 9s, which equals 3
m/s^2 is 39.2266
is the answer If thats what you needed